Emmanuelle Cousin
Aventis Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuelle Cousin.
Neurobiology of Disease | 2005
Sandrine Mace; Emmanuelle Cousin; Sylvain Ricard; Emmanuelle Génin; Emmanuel Spanakis; Carole Lafargue-Soubigou; Bérengère Génin; Raphaël Fournel; Sandrine Roche; Gilles Haussy; Florence Massey; Stéphane Soubigou; Georges Bréfort; Patrick Benoit; Alexis Brice; Dominique Campion; Melvyn Hollis; Laurent Pradier; Jesus Benavides; Jean-Francois Deleuze
Recent epidemiological, biological and genetic data indicate a relationship between cholesterol and Alzheimers disease (AD) including the association of polymorphisms of ABCA1 (a gene that is known to participate in cholesterol and phospholipid transport) with AD prevalence. Based on these data, we postulated that genetic variation in the related and brain-specific ABCA2 gene leads to increase risk of AD. A large case-control study was conducted where the sample was randomly divided into a hypothesis-testing sample (230 cases/286 controls) and a validation sample (210 cases/233 controls). Among the 45 SNPs we tested, one synonymous SNP (rs908832) was found significantly associated with AD in both samples. Additional analyses performed on the whole sample showed a very strong association between this marker and early-onset AD (OR = 3.82, 95% C.I. = [2.00 - 7.30], P = 5 x 10(-5)). Further research is needed to understand the functional role of this polymorphism. However, together with the reported associations of AD with APOE, CYP46A1 and ABCA1, the present result adds a very significant support for the role of cholesterol and phospholipid homeostasis in AD and a rationale for testing novel cholesterol homeostasis-related therapeutic strategies in AD.
Neurobiology of Aging | 2011
Emmanuelle Cousin; Sandrine Mace; Corinne Rocher; Colette Dib; Gaëlle Muzard; Didier Hannequin; Laurent Pradier; Jean-François Deleuze; Emmanuelle Génin; Alexis Brice; Dominique Campion
Alzheimers disease is a genetically complex disorder, for which new putative susceptibility genes are constantly proposed in the literature. We selected 16 candidate genes involved in biological pathways closely related to the pathology, and for which a genetic association with Alzheimers disease was previously detected: ACE, BACE1, BDNF, ECE1, HSPG2, IDE, IL1a, IL6, IL10, MAPT, PLAU, PrnP, PSEN1, SORL1, TFCP2 and TGFb1. The variants originally associated with the disease were genotyped in a French Caucasian sample including 428 cases and 475 controls and tested for association in order to replicate the initial results. Despite a careful replication study design, we failed to validate the initial findings for any of these variants, with the possible exception of MAPT, SORL1 and TFCP2 for which some nominal but inconsistent evidence of association was observed.
Neurobiology of Disease | 2008
Julien Chapuis; Didier Hannequin; Florence Pasquier; Peter Bentham; Alexis Brice; Isabelle Leber; Thierry Frebourg; Jean-François Deleuze; Emmanuelle Cousin; Uma Thaker; Philippe Amouyel; David Mann; Corinne Lendon; Dominique Campion; Jean Charles Lambert
The first genome-wide association in Alzheimers disease (AD) suggested that the GAB2 gene rs2373115 polymorphism may be a strong risk factor in APOE varepsilon4-carriers. We failed to detect an association of rs2373115 with the risk of developing AD in three populations (totalling 1406 controls and 1749 AD cases) whatever the APOE status, even if we observed a slight tendency for an increase of the GG genotype (OR (GG versus GT+TT)=1.3, 95% CI 1.0-1.6, p=0.09) and the G allele frequency (OR=1.3, 95%CI 1.0-1.6, p=0.05) in varepsilon4-carriers. In addition, the rs2373115 did not modulate the extent of tau phosphorylation in the brain of 89 AD cases. The GAB2 gene is at best a minor genetic determinant of AD.
Human Heredity | 2003
Emmanuelle Cousin; Emmanuelle Génin; Sandrine Mace; S. Ricard; C. Chansac; M. Del Zompo; J.F. Deleuze
Objective: When numerous single nucleotide polymorphisms (SNPs) have been identified in a candidate gene, a relevant and still unanswered question is to determine how many and which of these SNPs should be optimally tested to detect an association with the disease. Testing them all is expensive and often unnecessary. Alleles at different SNPs may be associated in the population because of the existence of linkage disequilibrium, so that knowing the alleles carried at one SNP could provide exact or partial knowledge of alleles carried at a second SNP. We present here a method to select the most appropriate subset of SNPs in a candidate gene based on the pairwise linkage disequilibrium between the different SNPs. Method: The best subset is identified through power computations performed under different genetic models, assuming that one of the SNPs identified is the disease susceptibility variant. Results: We applied the method on two data sets, an empirical study of the APOE gene region and a simulated study concerning one of the major genes (MG1) from the Genetic Analysis Workshop 12. For these two genes, the sets of SNPs selected were compared to the ones obtained using two other methods that need the reconstruction of multilocus haplotypes in order to identify haplotype-tag SNPs (htSNPs). We showed that with both data sets, our method performed better than the other selection methods.
Neuroscience Letters | 2003
Emmanuelle Cousin; Didier Hannequin; Sylvain Ricard; Sandrine Mace; Emmanuelle Génin; Céline Chansac; Alexis Brice; Bruno Dubois; Thierry Frebourg; Luc Mercken; Jesus Benavides; Laurent Pradier; Dominique Campion; Jean-Francois Deleuze
Alzheimers disease (AD) is a genetically complex neurodegenerative disorder and the leading cause of dementia of the elderly. Recently, Hu et al. suggested that a trinucleotide deletion in intron 13 of the APBB1 gene was a factor protecting against late-onset AD. We report here the results of a case/control study aimed at replicating this association. Our study included 461 AD patients and 397 matched controls. We compared the allele and genotype frequencies of the polymorphism between the two groups but did not find any statistically significant difference (P=0.08 and P=0.09, respectively). By contrast, adjusting for age and sex, we found a slight risk associated with the deletion (odds ratio=1.47, 95% confidence interval=1.05-2.04). Stratification by age showed that the risk effect associated with the deletion concerned subjects aged less than 65 years.
Molecular Genetics & Genomic Medicine | 2014
Maria Del Zompo; Jean-François Deleuze; Caterina Chillotti; Emmanuelle Cousin; Dana Niehaus; Richard P. Ebstein; Raffaella Ardau; Sandrine Mace; Louise Warnich; Mustafa Mujahed; Giovanni Severino; Colette Dib; Esme Jordaan; I. Murad; Stéphane Soubigou; Liezl Koen; Issam Bannoura; Corinne Rocher; Claudine Laurent; Murielle Derock; Nicole Faucon Biguet; Jacques Mallet; R. Meloni
GPR88, coding for a G protein‐coupled orphan receptor that is highly represented in the striatum, is a strong functional candidate gene for neuropsychiatric disorders and is located at 1p22‐p21, a chromosomal region that we have previously linked to bipolar disorder (BD) in the Sardinian population. In order to ascertain the relevance of GPR88 as a risk factor for psychiatric diseases, we performed a genetic association analysis between GPR88 and BD in a sample of triads (patient and both parents) recruited in the Sardinian and the Palestinian population as well as between GPR88 and schizophrenia (SZ) in triads from the Xhosa population in South Africa. We found a positive association between GPR88 and BD in the Sardinian and Palestinian triads. Moreover, we found a positive association between GPR88 and SZ in triads from the Xhosa population in South Africa. When these results were corrected for multiple testing, the association between GPR88 and BD was maintained in the Palestinian population. Thus, these results suggest that GPR88 deserves consideration as a candidate gene for psychiatric diseases and requires to be further investigated in other populations.
Thrombosis and Haemostasis | 2010
Detlef Kozian; Martin Lorenz; Winfried März; Emmanuelle Cousin; Sandrine Mace; Jean-François Deleuze
The thrombin-activatable fibrinolysis inhibitor (TAFI) is a key mediator in the regulation of endogenous fibrinolysis, down-regulating clot lysis by degrading the C-terminal lysine residues from fibrin, which are important for binding and activating plasminogen. Elevated TAFI antigen levels have been suggested to be associated with promoter variants and the Ala147Thr polymorphism; increased TAFI stability and antifibrinolytic potential instead have been associated with the Thr325Ile polymorphism. We investigated the influence of these two polymorphisms on cardiovascular and thrombotic events in patients of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. The LURIC study is a prospective cohort study comprising more than 3,300 patients aimed at identifying biochemical and genetic markers for metabolic and cardiovascular diseases. We demonstrate that the Ile/Ile genotype at position 325 of TAFI associates with the incidence of stroke and the age at onset of first stroke in patients of the LURIC cohort. Both the incidence of stroke and the risk of a premature event are higher in TAFI Ile325Ile patients with predisposing risk factors for thrombotic events such as diabetes mellitus, myocardial infarction or hypertension, alone or in combination. In contrast, no significant association was identified for the TAFI Ala147Thr polymorphism. The robust association of the TAFI Thr325Ile polymorphism with the incidence and the age at onset of first stroke strongly suggests a key role for TAFI in the pathogenetic mechanism of stroke.
BMC Genetics | 2006
Emmanuelle Cousin; Jean-François Deleuze; Emmanuelle Génin
BackgroundThe recent advances in genotyping and molecular techniques have greatly increased the knowledge of the human genome structure. Millions of polymorphisms are reported and freely available in public databases. As a result, there is now a need to identify among all these data, the relevant markers for genetic association studies. Recently, several methods have been published to select subsets of markers, usually Single Nucleotide Polymorphisms (SNPs), that best represent genetic polymorphisms in the studied candidate gene or region.ResultsIn this paper, we compared four of these selection methods, two based on haplotype information and two based on pairwise linkage disequilibrium (LD). The methods were applied to the genotype data on twenty genes with different patterns of LD and different numbers of SNPs. A measure of the efficiency of the different methods to select SNPs was obtained by comparing, for each gene and under several single disease susceptibility models, the power to detect an association that will be achieved with the selected SNP subsets.ConclusionNone of the four selection methods stands out systematically from the others. Methods based on pairwise LD information turn out to be the most interesting methods in a context of association study in candidate gene. In a context where the number of SNPs to be tested in a given region needs to be more limited, as in large-scale studies or wide genome scans, one of the two methods based on haplotype information, would be more suitable.
Neuroscience Letters | 2003
Emmanuelle Cousin; Didier Hannequin; Sandrine Mace; Bruno Dubois; Sylvain Ricard; Emmanuelle Génin; Christophe Brun; Céline Chansac; Laurent Pradier; Thierry Frebourg; Alexis Brice; Dominique Campion; Jean-Francois Deleuze
Polymorphisms in the Nicastrin (NCSTN) gene have recently been associated with familial early-onset Alzheimers disease (AD). The authors genotyped four NCTSN polymorphisms in a large cohort of 489 AD cases (including 158 sporadic early-onset AD cases and 95 familial early-onset AD cases) and 386 controls but failed to replicate the association between NCSTN haplotype B and AD.
BMC Genetics | 2005
Mathieu Bourgey; Anne-Louise Leutenegger; Emmanuelle Cousin; Catherine Bourgain; Marie-Claude Babron; Françoise Clerget-Darpoux
Genetic Analysis Workshop 14 simulated data have been analyzed with MASC(marker association segregation chi-squares) in which we implemented a bootstrap procedure to provide the variation intervals of parameter estimates. We model here the effect of a genetic factor, S, for Kofendrerd Personality Disorder in the region of the marker C03R0281 for the Aipotu population. The goodness of fit of several genetic models with two alleles for one locus has been tested. The data are not compatible with a direct effect of a single-nucleotide polymorphism (SNP) (SNP 16, 17, 18, 19 of pack 153) in the region. Therefore, we can conclude that the functional polymorphism has not been typed and is in linkage disequilibrium with the four studied SNPs. We obtained very large variation intervals both of the disease allele frequency and the degree of dominance. The uncertainty of the model parameters can be explained first, by the method used, which models marginal effects when the disease is due to complex interactions, second, by the presence of different sub-criteria used for the diagnosis that are not determined by S in the same way, and third, by the fact that the segregation of the disease in the families was not taken into account. However, we could not find any model that could explain the familial segregation of the trait, namely the higher proportion of affected parents than affected sibs.