Emmanuelle Huillard
ICM Partners
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuelle Huillard.
Cancer Cell | 2008
Ulrich Schüller; Vivi M. Heine; Junhao Mao; Alvin T. Kho; Allison K. Dillon; Young-Goo Han; Emmanuelle Huillard; Tao Sun; Azra H. Ligon; Ying Qian; Qiufu Ma; Arturo Alvarez-Buylla; Andrew P. McMahon; David H. Rowitch; Keith L. Ligon
Whether the brain tumor medulloblastoma originates from stem cells or restricted progenitor cells is unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted central nervous system (CNS) progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNPs) derive from hGFAP(+) and Olig2(+) rhombic lip progenitors. Hh activation in a spectrum of early- and late-stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors.
Neuron | 2007
Keith L. Ligon; Emmanuelle Huillard; Shwetal Mehta; Santosh Kesari; Hongye Liu; John A. Alberta; Robert M. Bachoo; Michael F. Kane; David N. Louis; Ronald A. DePinho; David J. Anderson; Charles D. Stiles; David H. Rowitch
Recent studies have identified stem cells in brain cancer. However, their relationship to normal CNS progenitors, including dependence on common lineage-restricted pathways, is unclear. We observe expression of the CNS-restricted transcription factor, OLIG2, in human glioma stem and progenitor cells reminiscent of type C transit-amplifying cells in germinal zones of the adult brain. Olig2 function is required for proliferation of neural progenitors and for glioma formation in a genetically relevant murine model. Moreover, we show p21(WAF1/CIP1), a tumor suppressor and inhibitor of stem cell proliferation, is directly repressed by OLIG2 in neural progenitors and gliomas. Our findings identify an Olig2-regulated lineage-restricted pathway critical for proliferation of normal and tumorigenic CNS stem cells.
Oncogene | 2012
D Friedmann-Morvinski; Pierre Neveu; Jason C. Dugas; Rm Gill; Emmanuelle Huillard; Chong Liu; Hui Zong; David H. Rowitch; Ben A. Barres; Im Verma; Kenneth S. Kosik
MicroRNAs (miRNAs) carry out post-transcriptional control of a multitude of cellular processes. Aberrant expression of miRNA can lead to diseases, including cancer. Gliomas are aggressive brain tumors that are thought to arise from transformed glioma-initiating neural stem cells (giNSCs). With the use of giNSCs and human glioblastoma cells, we investigated the function of miRNAs in gliomas. We identified pro-neuronal miR-128 as a candidate glioma tumor suppressor miRNA. Decreased expression of miR-128 correlates with aggressive human glioma subtypes. With a combination of molecular, cellular and in vivo approaches, we characterize miR-128s tumor suppressive role. miR-128 represses giNSC growth by enhancing neuronal differentiation. miR-128 represses growth and mediates differentiation by targeting oncogenic receptor tyrosine kinases (RTKs) epithelial growth factor receptor and platelet-derived growth factor receptor-α. Using an autochthonous glioma mouse model, we demonstrated that miR-128 repressed gliomagenesis. We identified miR-128 as a glioma tumor suppressor that targets RTK signaling to repress giNSC self-renewal and enhance differentiation.
Cancer Cell | 2011
Shwetal Mehta; Emmanuelle Huillard; Santosh Kesari; Cecile L. Maire; Diane Golebiowski; Emily P. Harrington; John A. Alberta; Michael F. Kane; Matthew Theisen; Keith L. Ligon; David H. Rowitch; Charles D. Stiles
High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Emmanuelle Huillard; Rintaro Hashizume; Joanna J. Phillips; Amelie Griveau; Rebecca A. Ihrie; Yasuyuki Aoki; Theodore Nicolaides; Arie Perry; Todd Waldman; Martin McMahon; William A. Weiss; Claudia Petritsch; C. David James; David H. Rowitch
Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAFT1799A encoding BRAFV600E) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAFV600E expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAFV600E inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAFV600E mutation and CDKN2A deficiency.
Journal of Clinical Investigation | 2012
Joanna J. Phillips; Emmanuelle Huillard; Aaron E. Robinson; Anna Ward; David H. Lum; Mei-Yin Polley; Steven D. Rosen; David H. Rowitch; Zena Werb
Glioblastoma (GBM), a uniformly lethal brain cancer, is characterized by diffuse invasion and abnormal activation of multiple receptor tyrosine kinase (RTK) signaling pathways, presenting a major challenge to effective therapy. The activation of many RTK pathways is regulated by extracellular heparan sulfate proteoglycans (HSPG), suggesting these molecules may be effective targets in the tumor microenvironment. In this study, we demonstrated that the extracellular sulfatase, SULF2, an enzyme that regulates multiple HSPG-dependent RTK signaling pathways, was expressed in primary human GBM tumors and cell lines. Knockdown of SULF2 in human GBM cell lines and generation of gliomas from Sulf2(-/-) tumorigenic neurospheres resulted in decreased growth in vivo in mice. We found a striking SULF2 dependence in activity of PDGFRα, a major signaling pathway in GBM. Ablation of SULF2 resulted in decreased PDGFRα phosphorylation and decreased downstream MAPK signaling activity. Interestingly, in a survey of SULF2 levels in different subtypes of GBM, the proneural subtype, characterized by aberrations in PDGFRα, demonstrated the strongest SULF2 expression. Therefore, in addition to its potential as an upstream target for therapy of GBM, SULF2 may help identify a subset of GBMs that are more dependent on exogenous growth factor-mediated signaling. Our results suggest the bioavailability of growth factors from the microenvironment is a significant contributor to tumor growth in a major subset of human GBM.
Nature Communications | 2015
Karim Labreche; Iva Simeonova; Vincent Gleize; Daniel Chubb; Eric Letouzé; Yasser Riazalhosseini; Sara E. Dobbins; Nabila Elarouci; François Ducray; Diana Zelenika; Christopher P. Wardell; Mathew Frampton; Olivier Saulnier; Tomi Pastinen; Sabrina Hallout; Dominique Figarella-Branger; Caroline Dehais; Ahmed Idbaih; Karima Mokhtari; Jean-Yves Delattre; Emmanuelle Huillard; G. Mark Lathrop; Marc Sanson; Richard S. Houlston
Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO.
Cellular and Molecular Life Sciences | 2014
Iva Simeonova; Emmanuelle Huillard
Although our knowledge of the biology of brain tumors has increased tremendously over the past decade, progress in treatment of these deadly diseases remains modest. Developing in vivo models that faithfully mirror human diseases is essential for the validation of new therapeutic approaches. Genetically engineered mouse models (GEMMs) provide elaborate temporally and genetically controlled systems to investigate the cellular origins of brain tumors and gene function in tumorigenesis. Furthermore, they can prove to be valuable tools for testing targeted therapies. In this review, we discuss GEMMs of brain tumors, focusing on gliomas and medulloblastomas. We describe how they provide critical insights into the molecular and cellular events involved in the initiation and maintenance of brain tumors, and illustrate their use in preclinical drug testing.
Oncotarget | 2016
Olle R. Lindberg; Andrew McKinney; Jane R. Engler; Gayane Koshkakaryan; Henry Gong; Aaron E. Robinson; Andrew J. Ewald; Emmanuelle Huillard; C. David James; Annette M. Molinaro; Joseph T.C. Shieh; Joanna J. Phillips
Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.
Cancer Cell | 2018
Amelie Griveau; Giorgio Seano; Samuel Shelton; Robert Kupp; Arman Jahangiri; Kirsten Obernier; Shanmugarajan Krishnan; Olle R. Lindberg; Tracy J Yuen; An-Chi Tien; Jennifer Sabo; Nancy Wang; Ivy Chen; Jonas Kloepper; Louis Larrouquere; Mitrajit Ghosh; Itay Tirosh; Emmanuelle Huillard; Arturo Alvarez-Buylla; Michael C. Oldham; Anders Persson; William A. Weiss; Tracy T. Batchelor; Anat Stemmer-Rachamimov; Mario L. Suvà; Joanna J. Phillips; Manish K. Aghi; Shwetal Mehta; Rakesh K. Jain; David H. Rowitch
Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.