Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuelle Merquiol is active.

Publication


Featured researches published by Emmanuelle Merquiol.


PLOS ONE | 2011

HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response

Emmanuelle Merquiol; Dotan Uzi; Tobias Mueller; Daniel Goldenberg; Yaakov Nahmias; Ramnik J. Xavier; Boaz Tirosh; Oren Shibolet

Background The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. Methods and Findings The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2–5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. Conclusions Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways.


Cell Reports | 2016

Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3

Dror Alishekevitz; Svetlana Gingis-Velitski; Orit Kaidar-Person; Lilach Gutter-Kapon; Sandra D. Scherer; Ziv Raviv; Emmanuelle Merquiol; Yael Ben-Nun; Valeria Miller; Chen Rachman-Tzemah; Michael Timaner; Yelena Mumblat; Neta Ilan; David Loven; Dov Hershkovitz; Ronit Satchi-Fainaro; Galia Blum; Jonathan P. Sleeman; Israel Vlodavsky; Yuval Shaked

Summary While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice.


Oncogene | 2015

A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression

S J Salpeter; Yair Pozniak; Emmanuelle Merquiol; Yael Ben-Nun; Tamar Geiger; Galia Blum

Although cysteine cathepsins have been identified as key regulators of cancer growth, their specific role in tumor development remains unclear. Recent studies have shown that high activity levels of tumor cathepsins are primarily a result of increased cathepsin activity in cancer-promoting tumor-associated macrophages (TAMs). To further investigate the role of cysteine cathepsin activity in normal and polarized macrophages, we established in vitro and in vivo models of macrophage differentiation and polarization and used a novel cysteine cathepsin inhibitor, GB111-NH2, to block the activity of cathepsins B, L and S. Here we show that in vitro, cysteine cathepsin inhibition yields both apoptosis and proliferation of macrophages, owing to increased oxidative stress. Proteomic analysis of cathepsin- inhibited macrophages demonstrates inhibition of autophagy, suggesting a likely cause of elevated reactive oxygen species (ROS) levels. In vivo models of mammary cancer further show that cathepsin inhibition yields TAM death owing to increased ROS levels. Strikingly, apoptosis in TAMs yields a seemingly cell non-autonomous death of neighboring cancer cells, and regression of the primary growth. These results show that cysteine cathepsin inhibitors can specifically trigger macrophage cell death and may function as an effective anticancer therapy in tumors with high levels of TAMs.


Theranostics | 2015

Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage Targeted Therapy

Yael Ben-Nun; Emmanuelle Merquiol; Alexander Brandis; Boris Turk; Avigdor Scherz; Galia Blum

Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases.


Arthritis Research & Therapy | 2015

Detecting cathepsin activity in human osteoarthritis via activity-based probes

Louisa Ben-Aderet; Emmanuelle Merquiol; Duha Fahham; Ashok Kumar; Eli Reich; Yael Ben-Nun; Leonid Kandel; Amir Haze; Meir Liebergall; M.K. Kosinska; Juergen Steinmeyer; Boris Turk; Galia Blum; Mona Dvir-Ginzberg

IntroductionLysosomal cathepsins have been reported to contribute to Osteoarthritis (OA) pathophysiology due to their increase in pro-inflammatory conditions. Given the causal role of cathepsins in OA, monitoring their specific activity could provide means for assessing OA severity. To this end, we herein sought to assess a cathepsin activity-based probe (ABP), GB123, in vitro and in vivo.MethodsProtein levels and activity of cathepsins B and S were monitored by immunoblot analysis and GB123 labeling in cultured primary chondrocytes and conditioned media, following stimuli with tumor necrosis factor alpha (TNFα) and/or Interleukin 1 beta (IL-1β). Similarly, cathepsin activity was examined in sections of intact cartilage (IC) and degraded cartilage (DC) regions of OA. Finally, synovial fluid (SF) and serum from donors with no signs of diseases, early OA, late OA and rheumatoid arthritis (RA) patients were analyzed with GB123 to detect distinct activity levels of cathepsin B and S.ResultsCathepsin activity in cell lysates, conditioned media explants and DC sections showed enhanced enzymatic activity of cathepsins B and S. Further histological analysis revealed that cathepsin activity was found higher in superficial zones of DC than in IC. Examining serum and SF revealed that cathepsin B is significantly elevated with OA severity in serum and SF, yet levels of cathepsin S are more correlated with synovitis and RA.ConclusionsBased on our data, cathepsin activity monitored by ABPs correlated well with OA severity and joint inflammation, directing towards a novel etiological target for OA, which possesses significant translational potential in developing means for non-invasive detection of early signs of OA.


Nature Communications | 2018

Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer

Hadas Gibori; Shay Eliyahu; Adva Krivitsky; Dikla Ben-Shushan; Yana Epshtein; Galia Tiram; Rachel Blau; Paula Ofek; Joo Sang Lee; Eytan Ruppin; Limor Landsman; Iris Barshack; Talia Golan; Emmanuelle Merquiol; Galia Blum; Ronit Satchi-Fainaro

The heterogeneity of pancreatic ductal adenocarcinoma (PDAC) suggests that successful treatment might rely on simultaneous targeting of multiple genes, which can be achieved by RNA interference-based therapeutic strategies. Here we show a potent combination of microRNA and siRNA delivered by an efficient nanocarrier to PDAC tumors. Using proteomic-microRNA profiles and survival data of PDAC patients from TCGA, we found a novel signature for prolonged survival. Accordingly, we used a microRNA-mimic to increase miR-34a together with siRNA to silence PLK1 oncogene. For in vivo dual-targeting of this combination, we developed a biodegradable amphiphilic polyglutamate amine polymeric nanocarrier (APA). APA-miRNA–siRNA polyplexes systemically administered to orthotopically inoculated PDAC-bearing mice showed no toxicity and accumulated at the tumor, resulting in an enhanced antitumor effect due to inhibition of MYC oncogene, a common target of both miR-34a and PLK1. Taken together, our findings warrant this unique combined polyplex’s potential as a novel nanotherapeutic for PDAC.Treatment of pancreatic ductal adenocarcinoma is still challenging and patients survival has only marginally improved in the last decade. Here the authors produce a PGA-based polymeric nanocarrier for the dual delivery of miR-34a-mimic and PLK1-targeting siRNA resulting in killing of pancreatic cancer cells in vivo.


Nano Letters | 2018

Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes

Hanmant K. Gaikwad; Darya Tsvirkun; Yael Ben-Nun; Emmanuelle Merquiol; Rachela Popovtzer; Galia Blum

X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT.


Journal of the American Heart Association | 2017

New Role for Interleukin‐13 Receptor α1 in Myocardial Homeostasis and Heart Failure

Uri Amit; David Kain; Allon Wagner; Avinash Das Sahu; Yael Nevo‐Caspi; Nir Gonen; Natali Molotski; Tal Konfino; Natalie Landa; Nili Naftali-Shani; Galia Blum; Emmanuelle Merquiol; Danielle Karo-Atar; Yariv Kanfi; Gidi Paret; Ariel Munitz; Haim Y. Cohen; Eytan Ruppin; Sridhar Hannenhalli; Jonathan Leor

Background The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins‐4 and ‐13 are anti‐inflammatory type‐2 cytokines, signaling via the common interleukin‐13 receptor α1 chain and the type‐2 interleukin‐4 receptor. The role of interleukin‐13 receptor α1 in the heart is unknown. Methods and Results We analyzed myocardial samples from human donors (n=136) and patients with end‐stage heart failure (n=177). We found that the interleukin‐13 receptor α1 is present in the myocardium and, together with the complementary type‐2 interleukin‐4 receptor chain Il4ra, is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1‐deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild‐type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P=0.004, left ventricular end‐diastolic diameter 4.2±0.2 versus 3.92±0.3; P=0.03). A bioinformatic analysis of mouse hearts indicated that interleukin‐13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=−2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure‐overload conditions. Conclusions The results of our studies in humans and mice indicate, for the first time, a role of interleukin‐13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease.


Journal of the American Chemical Society | 2018

CT Imaging of Enzymatic Activity in Cancer Using Covalent Probes Reveal a Size-Dependent Pattern

Darya Tsvirkun; Yael Ben-Nun; Emmanuelle Merquiol; Ivan Zlotver; Karen Meir; Tommy Weiss-Sadan; Ilan Matok; Rachela Popovtzer; Galia Blum

X-ray CT instruments are among the most available, efficient, and cost-effective imaging modalities in hospitals. The field of CT molecular imaging is emerging which relies mainly on the detection of gold nanoparticles and iodine-containing compounds directed to tagging a variety of abundant biomolecules. Here for the first time we attempted to detect enzymatic activity, while the low sensitivity of CT scanners to contrast reagents made this a challenging task. Therefore, we developed a new class of nanosized cathepsin-targeted activity-based probes (ABPs) for functional CT imaging of cancer. ABPs are small molecules designed to covalently modify enzyme targets in an activity-dependent manner. Using a CT instrument, these novel probes enable detection of the elevated cathepsin activity within cancerous tissue, thus creating a direct link between biological processes and imaging signals. We present the generation and biochemical evaluation of a library of ABPs tagged with different sized gold nanoparticles (GNPs), with various ratios of cathepsin-targeting moiety and a combination of different polyethylene glycol (PEG) protective layers. The most potent and stable GNP-ABPs were applied for noninvasive cancer imaging in mice. Surprisingly, detection of CT contrast from the tumor had reverse correlation to GNP size and the amount of targeting moiety. Interestingly, TEM images of tumor sections show intercellular lysosomal subcellular localization of the GNP-ABPs. In conclusion, we demonstrate that the covalent linkage is key for detection using low sensitive imaging modalities and the utility of GNP-ABPs as a promising tool for enzymatic-based CT imaging.


Immunology | 2018

mTORC1 activation in B cells confers impairment of marginal zone microarchitecture by exaggerating cathepsin activity

Naresh Kumar Meena; Shakti Prasad Pattanayak; Yael Ben-Nun; Sandrine Benhamron; Saran Kumar; Emmanuelle Merquiol; Nadine Hövelmeyer; Galia Blum; Boaz Tirosh

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and lymphocyte proliferation. It is inhibited by the tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2. Deletion of either gene results in robust activation of mTORC1. Mature B cells reside in the spleen at two major anatomical locations, the marginal zone (MZ) and follicles. The MZ constitutes the first line of humoral response against blood‐borne pathogens and undergoes atrophy in chronic inflammation. In previous work, we showed that mice deleted for TSC1 in their B cells (TSC1BKO) have almost no MZ B cells, whereas follicular B cells are minimally affected. To explore potential underlying mechanisms for MZ B‐cell loss, we have analysed the spleen MZ architecture of TSC1BKO mice and found it to be severely impaired. Examination of lymphotoxins (LTα and LTβ) and lymphotoxin receptor (LTβR) expression indicated that LTβR levels in spleen stroma were reduced by TSC1 deletion in the B cells. Furthermore, LTα transcripts in B cells were reduced. Because LTβR is sensitive to proteolysis, we analysed cathepsin activity in TSC1BKO. A higher cathepsin activity, particularly of cathepsin B, was observed, which was reduced by mTORC1 inhibition with rapamycin in vivo. Remarkably, in vivo administration of a pan‐cathepsin inhibitor restored LTβR expression, LTα mRNA levels and the MZ architecture. Our data identify a novel connection, although not elucidated at the molecular level, between mTORC1 and cathepsin activity in a manner relevant to MZ dynamics.

Collaboration


Dive into the Emmanuelle Merquiol's collaboration.

Top Co-Authors

Avatar

Galia Blum

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yael Ben-Nun

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boaz Tirosh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Darya Tsvirkun

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge