Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emmanuelle Morin is active.

Publication


Featured researches published by Emmanuelle Morin.


New Phytologist | 2009

454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity

Marc Buée; M. Reich; Claude Murat; Emmanuelle Morin; R. H. Nilsson; S. Uroz; Francis L. Martin

* Soil fungi play a major role in ecological and biogeochemical processes in forests. Little is known, however, about the structure and richness of different fungal communities and the distribution of functional ecological groups (pathogens, saprobes and symbionts). * Here, we assessed the fungal diversity in six different forest soils using tag-encoded 454 pyrosequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS-1). No less than 166 350 ITS reads were obtained from all samples. In each forest soil sample (4 g), approximately 30 000 reads were recovered, corresponding to around 1000 molecular operational taxonomic units. * Most operational taxonomic units (81%) belonged to the Dikarya subkingdom (Ascomycota and Basidiomycota). Richness, abundance and taxonomic analyses identified the Agaricomycetes as the dominant fungal class. The ITS-1 sequences (73%) analysed corresponded to only 26 taxa. The most abundant operational taxonomic units showed the highest sequence similarity to Ceratobasidium sp., Cryptococcus podzolicus, Lactarius sp. and Scleroderma sp. * This study validates the effectiveness of high-throughput 454 sequencing technology for the survey of soil fungal diversity. The large proportion of unidentified sequences, however, calls for curated sequence databases. The use of pyrosequencing on soil samples will accelerate the study of the spatiotemporal dynamics of fungal communities in forest ecosystems.


Nature | 2010

Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

Francis L. Martin; Annegret Kohler; Claude Murat; Raffaella Balestrini; Pedro M. Coutinho; Olivier Jaillon; Barbara Montanini; Emmanuelle Morin; Benjamin Noel; Riccardo Percudani; Bettina Porcel; Andrea Rubini; Antonella Amicucci; Joelle Amselem; Véronique Anthouard; Sergio Arcioni; François Artiguenave; Jean-Marc Aury; Paola Ballario; Angelo Bolchi; Andrea Brenna; Annick Brun; Marc Buee; Brandi Cantarel; Gérard Chevalier; Arnaud Couloux; Corinne Da Silva; Sébastien Duplessis; Stefano Ghignone; Benoı̂t Hilselberger

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ∼125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ∼58% of the genome. In contrast, this genome only contains ∼7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Obligate biotrophy features unraveled by the genomic analysis of rust fungi

Sébastien Duplessis; Christina A. Cuomo; Yao-Cheng Lin; Andrea Aerts; Emilie Tisserant; Claire Veneault-Fourrey; David L. Joly; Stéphane Hacquard; Joelle Amselem; Brandi L. Cantarel; Readman Chiu; Pedro M. Coutinho; Nicolas Feau; Matthew A. Field; Pascal Frey; Eric Gelhaye; Jonathan M. Goldberg; Manfred Grabherr; Chinnappa D. Kodira; Annegret Kohler; Ursula Kües; Erika Lindquist; Susan Lucas; Rohit Mago; Evan Mauceli; Emmanuelle Morin; Claude Murat; Jasmyn Pangilinan; Robert F. Park; Matthew Pearson

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Science | 2011

The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi

Daniel C. Eastwood; Dimitrios Floudas; Manfred Binder; Andrzej Majcherczyk; Patrick Schneider; Andrea Aerts; Fred O. Asiegbu; Scott E. Baker; Kerrie Barry; Mika Bendiksby; Melanie Blumentritt; Pedro M. Coutinho; Dan Cullen; Ronald P. de Vries; Allen C. Gathman; Barry Goodell; Bernard Henrissat; Katarina Ihrmark; Håvard Kauserud; Annegret Kohler; Kurt LaButti; Alla Lapidus; José L. Lavín; Yong-Hwan Lee; Erika Lindquist; Walt W. Lilly; Susan Lucas; Emmanuelle Morin; Claude Murat; José A. Oguiza

Comparative genomic analysis of “dry rot” fungus shows both convergent evolution and divergence among fungal decomposers. Brown rot decay removes cellulose and hemicellulose from wood—residual lignin contributing up to 30% of forest soil carbon—and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Emilie Tisserant; Mathilde Malbreil; Alan Kuo; Annegret Kohler; Aikaterini Symeonidi; Raffaella Balestrini; Philippe Charron; Nina Duensing; Nicolas Frei dit Frey; Vivienne Gianinazzi-Pearson; Luz B. Gilbert; Yoshihiro Handa; Joshua R. Herr; Mohamed Hijri; Raman Koul; Masayoshi Kawaguchi; Franziska Krajinski; Peter J. Lammers; Frédéric Masclaux; Claude Murat; Emmanuelle Morin; Steve Ndikumana; Marco Pagni; Denis Petitpierre; Natalia Requena; Pawel Rosikiewicz; Rohan Riley; Katsuharu Saito; Hélène San Clemente; Harris Shapiro

Significance The arbuscular mycorrhizal symbiosis between fungi of the Glomeromycota phylum and plants involves more than two-thirds of all known plant species, including important crop species. This mutualistic symbiosis, involving one of the oldest fungal lineages, is arguably the most ecologically and agriculturally important symbiosis in terrestrial ecosystems. The Glomeromycota are unique in that their spores and coenocytic hyphae contain hundreds of nuclei in a common cytoplasm, which raises important questions about the natural selection, population genetics, and gene expression of these highly unusual organisms. Study of the genome of Rhizophagus irregularis provides insight into genes involved in obligate biotrophy and mycorrhizal symbioses and the evolution of an ancient asexual organism, and thus is of fundamental importance to the field of genome evolution. The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici

Sébastien Duplessis; Christina A. Cuomo; Yao-Cheng Lin; Andrea Aerts; Emilie Tisserant; Claire Veneault-Fourrey; David L. Joly; Stéphane Hacquard; Joelle Amselem; Brandi L. Cantarel; Readman Chiu; Pedro Couthinho; Nicolas Feau; Matthew A. Field; Pascal Frey; Eric Gelhaye; Jonathan M. Goldberg; Manfred Grabherr; Chinnappa D. Kodira; Annegret Kohler; Ursula Kües; Erika Lindquist; Susan Lucas; Rohit Mago; Evan Mauceli; Emmanuelle Morin; Claude Murat; Jasmyn Pangilinan; Robert F. Park; Matthew Pearson

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

Robert Riley; Asaf Salamov; Daren W. Brown; László G. Nagy; Dimitrios Floudas; Benjamin W. Held; Anthony Levasseur; Vincent Lombard; Emmanuelle Morin; Robert Otillar; Erika Lindquist; Hui Sun; Kurt LaButti; Jeremy Schmutz; Dina Jabbour; Hong Luo; Scott E. Baker; Antonio G. Pisabarro; Jonathan D. Walton; Robert A. Blanchette; Bernard Henrissat; Francis L. Martin; Dan Cullen; David S. Hibbett; Igor V. Grigoriev

Significance Wood decay fungi have historically been characterized as either white rot, which degrade all components of plant cell walls, including lignin, or brown rot, which leave lignin largely intact. Genomic analyses have shown that white-rot species possess multiple lignin-degrading peroxidases (PODs) and expanded suites of enzymes attacking crystalline cellulose. To test the adequacy of the white/brown-rot categories, we analyzed 33 fungal genomes. Some species lack PODs, and thus resemble brown-rot fungi, but possess the cellulose-degrading apparatus typical of white-rot fungi. Moreover, they appear to degrade lignin, based on decay analyses on wood wafers. Our results indicate that the prevailing paradigm of white rot vs. brown rot does not capture the diversity of fungal wood decay mechanisms. Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


New Phytologist | 2012

The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont

Emilie Tisserant; Annegret Kohler; P. Dozolme-Seddas; Raffaella Balestrini; Karim Benabdellah; Alexandre Colard; Daniel Croll; C. da Silva; S. K. Gomez; Raman Koul; Nuria Ferrol; Valentina Fiorilli; Damien Formey; Philipp Franken; Nicole Helber; Mohamed Hijri; Luisa Lanfranco; Erika Lindquist; Y. Liu; Mathilde Malbreil; Emmanuelle Morin; Julie Poulain; Harris Shapiro; D. van Tuinen; A. Waschke; Concepción Azcón-Aguilar; Guillaume Bécard; Paola Bonfante; Maria J. Harrison; Helge Küster

• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

Emmanuelle Morin; Annegret Kohler; Adam R. Baker; Marie Foulongne-Oriol; Vincent Lombard; László G. Nagy; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Annick Brun; Andrea Aerts; Andy M. Bailey; Christophe Billette; Pedro M. Coutinho; Greg Deakin; Harshavardhan Doddapaneni; Dimitrios Floudas; Jane Grimwood; Kristiina Hildén; Ursula Kües; Kurt LaButti; Alla Lapidus; Erika Lindquist; Susan Lucas; Claude Murat; Robert Riley; Asaf Salamov; Jeremy Schmutz; Venkataramanan Subramanian; Han A. B. Wösten; Jianping Xu

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


New Phytologist | 2012

Insight into trade???off between wood decay and parasitism from the genome of a fungal forest pathogen

Åke Olson; Andrea Aerts; Fred O. Asiegbu; Lassaad Belbahri; Ourdia Bouzid; Anders Broberg; Björn Canbäck; Pedro M. Coutinho; Dan Cullen; Kerstin Dalman; Giuliana Deflorio; Linda T.A. van Diepen; Christophe Dunand; Sébastien Duplessis; Mikael Brandström Durling; Paolo Gonthier; Jane Grimwood; Carl Gunnar Fossdal; David Hansson; Bernard Henrissat; Ari M. Hietala; Kajsa Himmelstrand; Dirk Hoffmeister; Nils Högberg; Timothy Y. James; Magnus Karlsson; Annegret Kohler; Ursula Kües; Yong-Hwan Lee; Yao-Cheng Lin

Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

Collaboration


Dive into the Emmanuelle Morin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis L. Martin

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar

Erika Lindquist

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Emilie Tisserant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Kuo

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Igor V. Grigoriev

United States Department of Energy

View shared research outputs
Researchain Logo
Decentralizing Knowledge