Emmanuelle Vallez
university of lille
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emmanuelle Vallez.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2011
Sandrine Caron; An Verrijken; I. Mertens; Carolina Huaman Samanez; Gisèle Mautino; Joel T. Haas; Daniel Duran-Sandoval; Janne Prawitt; Sven Francque; Emmanuelle Vallez; Anne Muhr-tailleux; Isabelle Berard; Folkert Kuipers; Jan Albert Kuivenhoven; Sudha B. Biddinger; Marja-Riitta Taskinen; Luc Van Gaal; Bart Staels
Objective—Hypertriglyceridemia and fatty liver are common in patients with type 2 diabetes, but the factors connecting alterations in glucose metabolism with plasma and liver lipid metabolism remain unclear. Apolipoprotein CIII (apoCIII), a regulator of hepatic and plasma triglyceride metabolism, is elevated in type 2 diabetes. In this study, we analyzed whether apoCIII is affected by altered glucose metabolism. Methods and Results—Liver-specific insulin receptor–deficient mice display lower hepatic apoCIII mRNA levels than controls, suggesting that factors other than insulin regulate apoCIII in vivo. Glucose induces apoCIII transcription in primary rat hepatocytes and immortalized human hepatocytes via a mechanism involving the transcription factors carbohydrate response element–binding protein and hepatocyte nuclear factor-4&agr;. ApoCIII induction by glucose is blunted by treatment with agonists of farnesoid X receptor and peroxisome proliferator-activated receptor-&agr; but not liver X receptor, ie, nuclear receptors controlling triglyceride metabolism. Moreover, in obese humans, plasma apoCIII protein correlates more closely with plasma fasting glucose and glucose excursion after oral glucose load than with insulin. Conclusion—Glucose induces apoCIII transcription, which may represent a mechanism linking hyperglycemia, hypertriglyceridemia, and cardiovascular disease in type 2 diabetes.
Nature Communications | 2015
Mohamed-Sami Trabelsi; Mehdi Daoudi; Janne Prawitt; Sarah Ducastel; Véronique Touche; Sama Islam Sayin; Alessia Perino; Cheryl A Brighton; Yasmine Sebti; Jérome Kluza; Olivier Briand; Hélène Dehondt; Emmanuelle Vallez; Emilie Dorchies; Gregory Baud; Valeria Spinelli; Nathalie Hennuyer; Sandrine Caron; Kadiombo Bantubungi; Robert Caiazzo; Frank Reimann; Philippe Marchetti; Philippe Lefebvre; Fredrik Bäckhed; Fiona M. Gribble; Kristina Schoonjans; François Pattou; Anne Tailleux; Bart Staels; Sophie Lestavel
Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Josep Julve; Joan Carles Escolà-Gil; Noemi Rotllan; Catherine Fievet; Emmanuelle Vallez; Carolina de la Torre; Vicent Ribas; John H. Sloan; Francisco Blanco-Vaca
Introduction—Apolipoprotein (apo) A-II is the second most abundant high-density lipoprotein (HDL) apolipoprotein. We assessed the mechanism involved in the altered postprandial triglyceride-rich lipoprotein metabolism of female human apoA-II-transgenic mice (hapoA-II-Tg mice), which results in up to an 11-fold increase in plasma triglyceride concentration. The relationships between apoA-II, HDL composition, and lipoprotein lipase (LPL) activity were also analyzed in a group of normolipidemic women. Methods and Results—Triglyceride-rich lipoprotein catabolism was decreased in hapoA-II-Tg mice compared to control mice. This suggests that hapoA-II, which was mainly associated with HDL during fasting and postprandially, impairs triglyceride-rich lipoprotein lipolysis. HDL isolated from hapoA-II-Tg mice impaired bovine LPL activity. Two-dimensional gel electrophoresis, mass spectrometry, and immunonephelometry identified a marked deficiency in the HDL content of apoA-I, apoC-III, and apoE in these mice. In normolipidemic women, apoA-II concentration was directly correlated with plasma triglyceride and inversely correlated with the HDL-apoC-II+apoE/apoC-III ratio. HDL-mediated induction of LPL activity was inversely correlated with apoA-II and directly correlated with the HDL-apoC-II+apoE/apoC-III ratio. Purified hapoA-II displaced apoC-II, apoC-III, and apoE from human HDL2. Human HDL3 was, compared to HDL2, enriched in apoA-II but poorer in apoC-II, apoC-III, and apoE. Conclusion—ApoA-II plays a crucial role in triglyceride catabolism by regulating LPL activity, at least in part, through HDL proteome modulation.
Journal of Experimental Medicine | 2017
Elodie Marciniak; Antoine Leboucher; Emilie Caron; Tariq Ahmed; Anne Tailleux; Julie Dumont; Tarik Issad; Ellen Gerhardt; Patrick Pagesy; Margaux Vileno; Clément Bournonville; Malika Hamdane; Kadiombo Bantubungi; Steve Lancel; Dominique Demeyer; Sabiha Eddarkaoui; Emmanuelle Vallez; Didier Vieau; Sandrine Humez; Emilie Faivre; Benjamin Grenier-Boley; Tiago F. Outeiro; Bart Staels; Philippe Amouyel; Detlef Balschun; Luc Buée; David Blum
The molecular pathways underlying tau pathology–induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer’s disease patients.
Atherosclerosis | 2011
Morgane Baron; Aurélie S. Leroyer; Zouher Majd; Fanny Lalloyer; Emmanuelle Vallez; Kadiombo Bantubungi; Giulia Chinetti-Gbaguidi; Chantal M. Boulanger; Bart Staels; Anne Tailleux
BACKGROUND Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) are complex pathologies characterized by lipid accumulation, chronic inflammation and extensive tissue remodelling. Microparticles (MPs), small membrane vesicles produced by activated and apoptotic cells, might not only be biomarkers, but also functional actors in these pathologies. The apoE2-KI mouse is a model of atherosclerosis and NAFLD. Activation of the nuclear receptor PPARα decreases atherosclerosis and components of non-alcoholic steatohepatitis (NASH) in the apoE2-KI mouse. OBJECTIVES (1) To determine whether MPs are present in atherosclerotic lesions, liver and plasma during atherosclerosis and NASH progression in apoE2-KI mice, and (2) to study whether PPARα activation modulates MP concentrations. METHODS ApoE2-KI mice were fed a Western diet to induce atherosclerosis and NASH. MPs were isolated from atherosclerotic lesions, liver and blood and quantified by flow cytometry. RESULTS An increase of MPs was observed in the atherosclerotic lesions and in the liver of apoE2-KI mice upon Western diet feeding. PPARα activation with fenofibrate decreased MP levels in the atherosclerotic lesions in a PPARα-dependent manner, but did not influence MP concentrations in the liver. CONCLUSION Here we report that MPs are present in atherosclerotic lesions and in the liver of apoE2-KI mice. Their concentration increased during atherosclerosis and NASH development. PPARα activation differentially modulates MP levels in a tissue-specific manner.
Diabetes | 2014
Kadiombo Bantubungi; Sarah-Anissa Hannou; Sandrine Caron-Houde; Emmanuelle Vallez; Morgane Baron; Anthony Lucas; Emmanuel Bouchaert; Réjane Paumelle; Anne Tailleux; Bart Staels
Type 2 diabetes (T2D) is hallmarked by insulin resistance, impaired insulin secretion, and increased hepatic glucose production. The worldwide increasing prevalence of T2D calls for efforts to understand its pathogenesis in order to improve disease prevention and management. Recent genome-wide association studies have revealed strong associations between the CDKN2A/B locus and T2D risk. The CDKN2A/B locus contains genes encoding cell cycle inhibitors, including p16Ink4a, which have not yet been implicated in the control of hepatic glucose homeostasis. Here, we show that p16Ink4a deficiency enhances fasting-induced hepatic glucose production in vivo by increasing the expression of key gluconeogenic genes. p16Ink4a downregulation leads to an activation of PKA-CREB-PGC1α signaling through increased phosphorylation of PKA regulatory subunits. Taken together, these results provide evidence that p16Ink4a controls fasting glucose homeostasis and could as such be involved in T2D development.
Journal of Medicinal Chemistry | 2017
Manuel Lasalle; Vanessa Hoguet; Nathalie Hennuyer; Florence Leroux; Catherine Piveteau; Loic Belloy; Sophie Lestavel; Emmanuelle Vallez; Emilie Dorchies; Isabelle Duplan; Emmanuel Sevin; Maxime Culot; Fabien Gosselet; Rajaa Boulahjar; Adrien Herledan; Bart Staels; Benoit Deprez; Anne Tailleux; Julie Charton
The role of the G-protein-coupled bile acid receptor TGR5 in various organs, tissues, and cell types, specifically in intestinal endocrine L-cells and brown adipose tissue, has made it a promising therapeutical target in several diseases, especially type-2 diabetes and metabolic syndrome. However, recent studies have shown deleterious on-target effects of systemic TGR5 agonists. To avoid these systemic effects while stimulating glucagon-like peptide-1 (GLP-1) secreting enteroendocrine L-cells, we have designed TGR5 agonists with low intestinal permeability. In this article, we describe their synthesis, characterization, and biological evaluation. Among them, compound 24 is a potent GLP-1 secretagogue, has low effect on gallbladder volume, and improves glucose homeostasis in a preclinical murine model of diet-induced obesity and insulin resistance, making the proof of concept of the potential of topical intestinal TGR5 agonists as therapeutic agents in type-2 diabetes.
Diabetes and Vascular Disease Research | 2017
Kristiaan Wouters; Yann Deleye; Sarah Anissa Hannou; Jonathan Vanhoutte; Xavier Maréchal; Augustin Coisne; Madjid Tagzirt; Bruno Derudas; Emmanuel Bouchaert; Christian Duhem; Emmanuelle Vallez; Casper G. Schalkwijk; François Pattou; David Montaigne; Bart Staels; Réjane Paumelle
The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk.
Atherosclerosis | 2016
Nathalie Hennuyer; Isabelle Duplan; Charlotte Paquet; Jonathan Vanhoutte; Eloise Woitrain; Véronique Touche; Sophie Colin; Emmanuelle Vallez; Sophie Lestavel; Philippe Lefebvre; Bart Staels
Transgenic Research | 2015
Valeria Spinelli; Céline Martin; Emilie Dorchies; Emmanuelle Vallez; Hélène Dehondt; Mohamed-Sami Trabelsi; Anne Tailleux; Sandrine Caron; Bart Staels