Emna Gharbi
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emna Gharbi.
Physiologia Plantarum | 2016
Emna Gharbi; Juan Pablo Martínez; Hela Benahmed; Marie-Laure Fauconnier; Stanley Lutts; Muriel Quinet
This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.
Journal of Plant Physiology | 2017
Emna Gharbi; Juan-Pablo Martínez; Hela Benahmed; Gilles Lepoint; Brigitte Vanpee; Muriel Quinet; Stanley Lutts
Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ13C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ13C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ13C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense.
Frontiers in Plant Science | 2017
Imène Hichri; Yordan Muhovski; Eva Žižková; Petre I. Dobrev; Emna Gharbi; José Manuel Franco-Zorrilla; Irene López-Vidriero; Roberto Solano; André Clippe; Abdelmounaim Errachid; Václav Motyka; Stanley Lutts
Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days) 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass) and photosynthesis (stomatal conductance and chlorophyll a content) were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.
Plant Science | 2017
Emna Gharbi; Juan-Pablo Martínez; Hela Benahmed; Imène Hichri; Petre I. Dobrev; Václav Motyka; Muriel Quinet; Stanley Lutts
A holistic approach was used to investigate the hormonal profile in relation with osmotic adjustment under salinity in Solanum lycopersicum and its halophyte wild relative Solanum chilense. Plants were subjected to 125mM NaCl for 7days. Solanum chilense displayed a contrasting behaviour comparatively to S. lycopersicum, not only for mineral nutrition, but also regarding the modalities of osmotic adjustment and phytohormonal profiling. The extent of osmotic adjustment was higher in S. chilense than in S. lycopersicum. Ions K+ and Na+ were the major contributors of osmotic adjustment in S. chilense, accounting respectively for 47 and 60% of osmotic potential. In contrast the contributions of proline and soluble sugars remained marginal for the two species although salt-induced accumulation of proline was higher in S. lycopersicum than in S. chilense. Both species also differed for their hormonal status under salinity and concentrations of most hormonal compounds were higher in S. chilense than in S. lycopersicum. Interestingly, salicylic acid, ethylene and cytokinins were positively correlated with osmotic potential in S. chilense under salinity while these hormones were negatively correlated with osmotic adjustment in S. lycopersicum. Our results suggested that the capacity to use inorganic ions as osmotica may improve salt resistance in S.chilense and that phytohormones could be involved in this process.
Journal of Plant Interactions | 2014
Arafet Manaa; Hajer Mimouni; Amel Terras; Farah Chebil; Salma Wasti; Emna Gharbi; Hela Ben Ahmed
The present study was focused to assess the physiological behavior and antioxidant responses of the medicinal plant Lepidium sativum L. (commonly called Garden cress) subjected hydroponically to NaCl stress during its vegetative growth stage. The results showed that the addition of NaCl to growth medium significantly reduced plant growth. The magnitude of the response was also linked to the plant organ considered and NaCl concentration supplemented to the medium. Tissue hydration seemed unaffected by salinity. Reduction in dry weight (DW) production was associated with a high accumulation of Na+ and Cl− and a significant reduction of K+ content in shoots. The accumulation of osmoregulatory compounds (proline and total sugars) in shoots and roots was greatly increased by NaCl. Activity staining of antioxidants after a native polyacrylamide gel electrophores (PAGE) showed four superoxide dismutase (SOD) isozymes in the extract of leaf-soluble proteins (one Mn-SOD, two Fe-SODs, and one CuZn-SOD), and three isoforms in roots (Mn-SOD, Fe-SOD, and CuZn-SOD). Four peroxidase (POD) isozymes in the roots and only one isozyme in the leaves were detected. The work demonstrated that activities of antioxidant defense enzymes changed in parallel with the increased salinity. In summary, these findings proved that L. sativum can be classified as a moderately tolerant plant to salinity.
Plant Signaling & Behavior | 2018
Emna Gharbi; Stanley Lutts; Hélène Dailly; Muriel Quinet
ABSTRACT Exogenous application of salicylic acid may improve tolerance to salinity. To investigate whether exogenous salicylic acid application had similar protective effects when applied as a priming agent or concomitantly with NaCl, tomato seedlings primed or not with 10 µM salicylic acid were further treated with 125 mM NaCl, 10 µM salicylic acid or combined treatments. Both priming and concomitant application of salicylic acid increased plant growth of salt-stressed plants but their positive impact was not additive. The endogenous salicylic acid concentration increased in the leaves after concomitant application but not in response to priming, suggesting that salicylic acid accumulated during priming was metabolized subsequently. Priming increased Na+ and K+ accumulation in leaves of salt-treated plants while concomitant application had no impact on shoot Na+ and K+ accumulation. Both priming and concomitant salicylic acid decreased osmotic potential values in salt-treated plants. Carbon isotope discrimination showed that combination of both salicylic acid application methods were required to maintain a good water use efficiency in salt-treated plants. Our work demonstrated that both procedures of salicylic acid application have positive impact on salt resistance but that the underlying properties sustaining these adaptations differ according to application methods.
Journal of Plant Nutrition | 2017
Salma Wasti; Arafet Manaa; Hajer Mimouni; Anissa Nsairi; Medyouni Ibtissem; Emna Gharbi; Hélène Gautier; Hela Ben Ahmed
ABSTRACT The aim of this study was to investigate the impact of application of calcium silicate and salinity singly, on plant growth and nutritional behavior and photosynthetic pigments of tomato. Application of sodium chloride (NaCl) induced significant reduction in plant development and growth parameters. Salt stress also led to an accumulation of sodium (Na+) and a decrease in potassium (K+) concentration. Reduction of chlorophyll and carotenoid in leaves were amongst other symptoms in salt-affected plants in 2 cultivars. Rio Grande was qualified as salt sensitive and Moneymaker as the salt tolerant genotype. Application of Silicon (Si) only improved plant behaviour as compared to control. Furthermore, Si induced ameliorative effects on the growth potential of NaCl stressed plants. This Si-ameliorative effect on plant varied depending on the considered cultivar and Si concentration. Based on these results, application of calcium silicate was suggested as an alternative way to ameliorate the harmful effects of salinity on tomato.
Journal of Plant Interactions | 2013
Arafet Manaa; Hajer Mimouni; Salma Wasti; Emna Gharbi; Amel Terras; H. Ben Ahmed
The plant hormone ethylene (C2H4) plays important roles in plant growth and development. Here, we report physiological response of transgenic Arabidopsis and tomato plants, antisensed for the ethylene receptor gene CcEIN4 from coffee trees (Coffea canephora), under salinity stress. Results showed that the germination rate was higher in seeds collected from transgenic plants than that seeds from wild plants under salt stress condition. Growth of transgenic Arabidopsis and tomato plants was less sensitive to salt stress than wild type. Some transgenic plants showed a stimulation of radicle length and root system growth. The better salt tolerance observed in transgenic tomatoes lines can be explained by: ability to control the accumulation of Na+ and Cl- in shoots and better K+ and Ca2 + uptake, resulting in higher K+:Na+ and Ca2 +:Na+ ratios. These results suggest that ethylene perception is involved in the plant response to saline stress and plays a pivotal role in the plant salt tolerance.
South African Journal of Botany | 2014
Arafet Manaa; Emna Gharbi; Hajer Mimouni; Salma Wasti; Stanley Lutts; Samira Aschi-Smiti; H. Ben Ahmed
Plant Omics | 2013
Arafet Manaa; Hajer Mimouni; Salma Wasti; Emna Gharbi; Samira Aschi-Smiti; Mireille Faurobert; Helena Ben Ahmed