Emre Aksoy
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emre Aksoy.
BMC Microbiology | 2012
Vangelis Doudoumis; George Tsiamis; Florence N. Wamwiri; Corey L. Brelsfoard; Uzma Alam; Emre Aksoy; Stelios Dalaperas; Adly M.M. Abd-Alla; Johnson O. Ouma; Peter Takac; Serap Aksoy; Kostas Bourtzis
BackgroundWolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals.ResultsIn the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome.ConclusionsWolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.
Current Biology | 2014
Aurélien Vigneron; Florent Masson; Agnès Vallier; Séverine Balmand; Marjolaine Rey; Carole Vincent-Monégat; Emre Aksoy; Etienne Aubailly-Giraud; Anna Zaidman-Rémy; Abdelaziz Heddi
Symbiotic associations are widespread in nature and represent a driving force in evolution. They are known to impact fitness, and thereby shape the host phenotype. Insects subsisting on nutritionally poor substrates have evolved mutualistic relationships with intracellular symbiotic bacteria (endosymbionts) that supply them with metabolic components lacking in their diet. In many species, endosymbionts are hosted within specialized host cells, called the bacteriocytes, and transmitted vertically across host generations. How hosts balance the costs and benefits of having endosymbionts, and whether and how they adjust symbiont load to their physiological needs, remains largely unexplored. By investigating the cereal weevil Sitophilus association with the Sodalis pierantonius endosymbiont, we discover that endosymbiont populations intensively multiply in young adults, before being rapidly eliminated within few days. We show that young adults strongly depend on endosymbionts and that endosymbiont proliferation after metamorphosis matches a drastic host physiological need for the tyrosine (Tyr) and phenylalanine (Phe) amino acids to rapidly build their protective exoskeleton. Tyr and Phe are precursors of the dihydroxyphenylalanine (DOPA) molecule that is an essential component for the cuticle synthesis. Once the cuticle is achieved, DOPA reaches high amounts in insects, which triggers endosymbiont elimination. This elimination relies on apoptosis and autophagy activation, allowing digestion and recycling of the endosymbiont material. Thus, the weevil-endosymbiont association reveals an adaptive interplay between metabolic and cellular functions that minimizes the cost of symbiosis and speeds up the exoskeleton formation during a critical phase when emerging adults are especially vulnerable.
Journal of Invertebrate Pathology | 2013
Vangelis Doudoumis; Uzma Alam; Emre Aksoy; Adly M.M. Abd-Alla; George Tsiamis; Corey L. Brelsfoard; Serap Aksoy; Kostas Bourtzis
Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis.
Applied and Environmental Microbiology | 2014
Emre Aksoy; Erich Loza Telleria; Richard Echodu; Yineng Wu; Loyce M. Okedi; Brian L. Weiss; Serap Aksoy; Adalgisa Caccone
ABSTRACT The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetses commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (104 to 106 normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetses gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Emre Aksoy; Aurélien Vigneron; XiaoLi Bing; Xin Zhao; Michelle O’Neill; Yineng Wu; Brian L. Weiss; Serap Aksoy
Significance Insects are responsible for transmitting protozoan parasites that cause fatal diseases in humans. While the underlying mechanisms by which parasites evade mammalian immune responses have been extensively studied, less is known about how parasites promote their survival in the insect vectors. An in-depth understanding of the molecular mechanisms that underlie vector–parasite associations can lead to the generation of novel transmission-blocking tools. Here, we show an adaptive coevolutionary process that enables the African trypanosomes to overcome the tsetse peritrophic matrix, a major barrier to infection outcome in the gut. Disrupting this manipulative process could prevent establishment of infections in the vector and reduce transmission. Tsetse flies are biological vectors of African trypanosomes, the protozoan parasites responsible for causing human and animal trypanosomiases across sub-Saharan Africa. Currently, no vaccines are available for disease prevention due to antigenic variation of the Variant Surface Glycoproteins (VSG) that coat parasites while they reside within mammalian hosts. As a result, interference with parasite development in the tsetse vector is being explored to reduce disease transmission. A major bottleneck to infection occurs as parasites attempt to colonize tsetse’s midgut. One critical factor influencing this bottleneck is the fly’s peritrophic matrix (PM), a semipermeable, chitinous barrier that lines the midgut. The mechanisms that enable trypanosomes to cross this barrier are currently unknown. Here, we determined that as parasites enter the tsetse’s gut, VSG molecules released from trypanosomes are internalized by cells of the cardia—the tissue responsible for producing the PM. VSG internalization results in decreased expression of a tsetse microRNA (mir-275) and interferes with the Wnt-signaling pathway and the Iroquois/IRX transcription factor family. This interference reduces the function of the PM barrier and promotes parasite colonization of the gut early in the infection process. Manipulation of the insect midgut homeostasis by the mammalian parasite coat proteins is a novel function and indicates that VSG serves a dual role in trypanosome biology—that of facilitating transmission through its mammalian host and insect vector. We detail critical steps in the course of trypanosome infection establishment that can serve as novel targets to reduce the tsetse’s vector competence and disease transmission.
Biological Invasions | 2015
K. M. Bayha; M. H. Chang; Carol Mariani; Jonathan L. Richardson; Danielle L. Edwards; T. S. DeBoer; C. Moseley; Emre Aksoy; Mary Beth Decker; P. M. Gaffney; G. R. Harbison; J. H. McDonald; Adalgisa Caccone
The ctenophore Mnemiopsis leidyi is one of the most successful marine bioinvaders on record. Native to the Atlantic coast of the Americas, M. leidyi invaded the Black Sea, Caspian and Mediterranean Seas beginning the in late 1980s, followed by the North and Baltic Seas starting in 2006, with major concomitant alterations in pelagic ecology, including fishery collapses in some cases. Using extensive native range sampling (21 sites), along with 11 invasive sites in the Black, Caspian, Mediterranean, North and Baltic Seas, we examined M. leidyi worldwide phylogeographic patterns using data from mitochondrial cytochrome b (cytb) and six nuclear microsatellite loci. Cytb and microsatellite data sets showed different levels of genetic differentiation in the native range. Analyses of cytb data revealed considerable genetic differentiation, recovering three major clusters (northwestern Atlantic, Caribbean, and South America) and further divided northwestern Atlantic sampling sites into three groups, separated approximately at Cape Hatteras on the US Atlantic coast and at the Floridian peninsula, separating the Gulf of Mexico and Atlantic coasts. In contrast, microsatellite data only distinguished samples north and south of Cape Hatteras, and suggested considerable gene flow among native samples with clear evidence of isolation by distance. Both cytb and microsatellite data sets indicated that the northern invaders (North/Baltic Seas) originated from north of Cape Hatteras, with cytb data pointing to Delaware and north. Microsatellite data indicated a source for the southern invaders (Black, Caspian and Mediterranean Seas) to be south of Cape Hatteras, while cytb data narrowed the source location to the Gulf of Mexico region. Both cytb and microsatellite data sets suggested that the southern invasion was associated with genetic bottlenecks while evidence was equivocal for the northern invasion. By increasing the native range spatial sampling, our dataset was able to sufficiently characterize patterns and levels of genetic differentiation in the native range of M. leidyi and identify likely biogeographic boundaries, allowing for the most complete characterization of M. leidyi’s invasion histories and most realistic estimates of its source region(s) to date.
Parasites & Vectors | 2013
Florence N. Wamwiri; Uzma Alam; Paul C. Thande; Emre Aksoy; Raphael M. Ngure; Serap Aksoy; Johnson O. Ouma; Grace Murilla
BackgroundTsetse flies harbor at least three bacterial symbionts: Wigglesworthia glossinidia, Wolbachia pipientis and Sodalis glossinidius. Wigglesworthia and Sodalis reside in the gut in close association with trypanosomes and may influence establishment and development of midgut parasite infections. Wolbachia has been shown to induce reproductive effects in infected tsetse. This study was conducted to determine the prevalence of these endosymbionts in natural populations of G. austeni and G. pallidipes and to assess the degree of concurrent infections with trypanosomes.MethodsFly samples analyzed originated from Kenyan coastal forests (trapped in 2009–2011) and South African G. austeni collected in 2008. The age structure was estimated by standard methods. G. austeni (n=298) and G. pallidipes (n= 302) were analyzed for infection with Wolbachia and Sodalis using PCR. Trypanosome infection was determined either by microscopic examination of dissected organs or by PCR amplification.ResultsOverall we observed that G. pallidipes females had a longer lifespan (70 d) than G. austeni (54 d) in natural populations. Wolbachia infections were present in all G. austeni flies analysed, while in contrast, this symbiont was absent from G. pallidipes. The density of Wolbachia infections in the Kenyan G. austeni population was higher than that observed in South African flies. The infection prevalence of Sodalis ranged from 3.7% in G. austeni to about 16% in G. pallidipes. Microscopic examination of midguts revealed an overall trypanosome infection prevalence of 6% (n = 235) and 5% (n = 552), while evaluation with ITS1 primers indicated a prevalence of about 13% (n = 296) and 10% (n = 302) in G. austeni and G. pallidipes, respectively. The majority of infections (46%) were with T. congolense. Co-infection with all three organisms was observed at 1% and 3.3% in G. austeni and G. pallidipes, respectively. Eleven out of the thirteen (85%) co-infected flies harboured T. congolense and T. simiae parasites. While the association between trypanosomes and Sodalis infection was statistically significant in G. pallidipes (P = 0.0127), the number of co-infected flies was too few for a definite conclusion.ConclusionsThe tsetse populations analyzed differed in the prevalence of symbionts, despite being sympatric and therefore exposed to identical environmental factors. The density of infections with Wolbachia also differed between G. austeni populations. There were too few natural co-infections detected with the Sodalis and trypanosomes to suggest extensive inter-relations between these infections in natural populations. We discuss these findings in the context of potential symbiont-mediated control interventions to reduce parasite infections and/or fly populations.
Scientific Reports | 2016
Francesca Scolari; Joshua B. Benoit; Veronika Michalkova; Emre Aksoy; Peter Takac; Adly M.M. Abd-Alla; Anna R. Malacrida; Serap Aksoy; Geoffrey M. Attardo
Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse’s viviparous biology.
Proceedings of the Royal Society B: Biological Sciences | 2017
XiaoLi Bing; Geoffrey M. Attardo; Aurélien Vigneron; Emre Aksoy; Francesca Scolari; Anna R. Malacrida; Brian L. Weiss; Serap Aksoy
Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetses survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the hosts nutritionally deficient diet. The absence of Wigglesworthias contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.
PLOS Neglected Tropical Diseases | 2017
Erick O. Awuoche; Brian L. Weiss; Aurélien Vigneron; Paul O. Mireji; Emre Aksoy; Benson Nyambega; Geoffrey M. Attardo; Yineng Wu; Michelle O’Neill; Grace Murilla; Serap Aksoy
Tsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT). AAT detrimentally affects agricultural activities in sub-Saharan Africa and has negative impacts on the livelihood and nutrient availability for the affected communities. After tsetse ingests an infectious blood meal, T. congolense sequentially colonizes the fly’s gut and proboscis (PB) organs before being transmitted to new mammalian hosts during subsequent feedings. Despite the importance of PB in blood feeding and disease transmission, little is known about its molecular composition, function and response to trypanosome infection. To bridge this gap, we used RNA-seq analysis to determine its molecular characteristics and responses to trypanosome infection. By comparing the PB transcriptome to whole head and midgut transcriptomes, we identified 668 PB-enriched transcripts that encoded proteins associated with muscle tissue, organ development, chemosensation and chitin-cuticle structure development. Moreover, transcripts encoding putative mechanoreceptors that monitor blood flow during tsetse feeding and interact with trypanosomes were also expressed in the PB. Microscopic analysis of the PB revealed cellular structures associated with muscles and cells. Infection with T. congolense resulted in increased and decreased expression of 38 and 88 transcripts, respectively. Twelve of these differentially expressed transcripts were PB-enriched. Among the transcripts induced upon infection were those encoding putative proteins associated with cell division function(s), suggesting enhanced tissue renewal, while those suppressed were associated with metabolic processes, extracellular matrix and ATP-binding as well as immunity. These results suggest that PB is a muscular organ with chemosensory and mechanosensory capabilities. The mechanoreceptors may be point of PB-trypanosomes interactions. T. congolense infection resulted in reduced metabolic and immune capacity of the PB. The molecular knowledge on the composition and putative functions of PB forms the foundation to identify new targets to disrupt tsetse’s ability to feed and parasite transmission.