Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emre Bukusoglu is active.

Publication


Featured researches published by Emre Bukusoglu.


Nature Materials | 2016

Topological defects in liquid crystals as templates for molecular self-assembly

Xiaoguang Wang; Daniel S. Miller; Emre Bukusoglu; Juan J. de Pablo; Nicholas L. Abbott

Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer-surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Nanoparticle self-assembly at the interface of liquid crystal droplets

Mohammad Rahimi; Tyler F. Roberts; Julio C. Armas-Pérez; Xiaoguang Wang; Emre Bukusoglu; Nicholas L. Abbott; Juan J. de Pablo

Significance Controlled assembly of nanoparticles at liquid crystal interfaces could lead to easily manufacturable building blocks for assembly of materials with tunable mechanical, optical, and electronic properties. Past work has examined nanoparticle assembly at planar liquid crystal interfaces. In this work, we show that nanoparticle assembly on curved interfaces is drastically different and arises for conditions under which assembly is too weak to occur on planar interfaces. We also demonstrate that liquid crystal-mediated nanoparticle interactions are strong, are remarkably sensitive to surface anchoring, and lead to hexagonal arrangements that do not arise in bulk systems. All of these elements form the basis for a highly tunable, predictable, and versatile platform for hierarchical materials assembly. Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles’ surface, the orientation at the liquid crystal’s air interface, and the bulk elasticity of the underlying liquid crystal. In this work, we consider nanoparticle assembly at the interface of nematic droplets. We present a systematic study of the free energy of nanoparticle-laden droplets in terms of experiments and a Landau–de Gennes formalism. The results of that study indicate that, even for conditions under which particles interact only weakly at flat interfaces, particles aggregate at the poles of bipolar droplets and assemble into robust, quantized arrangements that can be mapped onto hexagonal lattices. The contributions of elasticity and interfacial energy corresponding to different arrangements are used to explain the resulting morphologies, and the predictions of the model are shown to be consistent with experimental observations. The findings presented here suggest that particle-laden liquid crystal droplets could provide a unique and versatile route toward building blocks for hierarchical materials assembly.


Physical Review Letters | 2016

Experimental Insights into the Nanostructure of the Cores of Topological Defects in Liquid Crystals.

Xiaoguang Wang; Y. K. Kim; Emre Bukusoglu; Bo Zhang; Daniel S. Miller; Nicholas L. Abbott

The nanoscopic structure of the cores of topological defects in anisotropic condensed matter is an unresolved issue, although a number of theoretical predictions have been reported. In the experimental study reported in this Letter, we template the assembly of amphiphilic molecules from the cores of defects in liquid crystals and thereby provide the first experimental evidence that the cores of singular defects that appear optically to be points (with strength m=+1) are nanometer-sized closed-loop, disclination lines. We also analyze this result in the context of a model that describes the influence of amphiphilic assemblies on the free energy and stability of the defects. Overall, our experimental results and theoretical predictions reveal that the cores of defects with opposite strengths (e.g., m=+1 vs m=-1) differ in ways that profoundly influence processes of molecular self-assembly.


ACS Nano | 2016

Structural Transitions in Cholesteric Liquid Crystal Droplets

Ye Zhou; Emre Bukusoglu; José Martínez-González; Mohammad Rahimi; Tyler F. Roberts; Rui Zhang; Xiaoguang Wang; Nicholas L. Abbott; Juan J. de Pablo

Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.


Advanced Materials | 2015

Stimuli‐Responsive Cubosomes Formed from Blue Phase Liquid Crystals

Emre Bukusoglu; Xiaoguang Wang; José Martínez-González; Juan J. de Pablo; Nicholas L. Abbott

Cubosomes formed from blue phase liquid crystals (BPs) dispersed in aqueous media exhibit optical responses to biological amphiphiles. In this study, the formation of aqueous dispersions of BPs is reported, and the effects of confinement and lipids on the phase behavior, optical appearance, and morphology of BP droplets are characterized.


Small | 2013

Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions

Ankit Agarwal; Sumyra Sidiq; Shilpa Setia; Emre Bukusoglu; Juan J. de Pablo; Santanu Kumar Pal; Nicholas L. Abbott

This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, thin films of colloid-in-liquid crystal (CLC) gels undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at the aqueous interfaces of the gels. In particular, LC ordering transitions can propagate across the entire thickness of the gels. However, confinement of the LC to small domains with lateral sizes of ∼10 μm does change the nature of the anchoring transitions, as compared to films of pure LC, due to the effects of confinement on the elastic energy stored in the LC. The effects of confinement are also observed to cause the response of individual domains of the LC within the CLC gel to vary significantly from one to another, indicating that manipulation of LC domain size and shape can provide the basis of a general and facile method to tune the response of these LC-based physical gels to interfacial phenomena. Overall, the results presented in this paper establish that CLC gels offer a promising approach to the preparation of self-supporting, LC-based stimuli-responsive materials.


Annual Review of Chemical and Biomolecular Engineering | 2016

Design of Responsive and Active (Soft) Materials Using Liquid Crystals

Emre Bukusoglu; Marco A. Bedolla Pantoja; Peter C. Mushenheim; Xiaoguang Wang; Nicholas L. Abbott

Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Blue-phase liquid crystal droplets

José Martínez-González; Ye Zhou; Mohammad Rahimi; Emre Bukusoglu; Nicholas L. Abbott; Juan J. de Pablo

Significance Blue phases represent distinct liquid states of matter having a high viscosity, finite shear modulus, and Bragg reflections in the visible spectrum. These properties arise from a highly ordered defect structure, unique amongst complex liquids, which is stable only over a narrow range of temperature. The number and characteristics of the corresponding unit cells could in principle be altered by confinement. In this work we show that the stability of blue phases can be increased by preparing them into small droplets. We demonstrate that defect structure, color, and morphology can be manipulated by controlling droplet size, temperature, and anchoring, thereby offering intriguing opportunities for optical devices based on chiral liquid crystals. Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid–state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications.


Soft Matter | 2014

Colloid-in-Liquid Crystal Gels Formed via Spinodal Decomposition

Emre Bukusoglu; Santanu Kumar Pal; Juan J. de Pablo; Nicholas L. Abbott

We report that colloid-in-liquid crystal (CLC) gels can be formed via a two-step process that involves spinodal decomposition of a dispersion of colloidal particles in an isotropic phase of mesogens followed by nucleation of nematic domains within the colloidal network defined by the spinodal process. This pathway contrasts to previously reported routes leading to the formation of CLC gels, which have involved entanglement of defects or exclusion of particles from growing nematic domains. The new route provides the basis of simple design rules that enable control of the microstructure and dynamic mechanical properties of the gels.


Nature | 2018

Self-reporting and self-regulating liquid crystals

Y. K. Kim; Xiaoguang Wang; Pranati Mondkar; Emre Bukusoglu; Nicholas L. Abbott

Liquid crystals (LCs) are anisotropic fluids that combine the long-range order of crystals with the mobility of liquids1,2. This combination of properties has been widely used to create reconfigurable materials that optically report information about their environment, such as changes in electric fields (smart-phone displays)3, temperature (thermometers)4 or mechanical shear5, and the arrival of chemical and biological stimuli (sensors)6,7. An unmet need exists, however, for responsive materials that not only report their environment but also transform it through self-regulated chemical interactions. Here we show that a range of stimuli can trigger pulsatile (transient) or continuous release of microcargo (aqueous microdroplets or solid microparticles and their chemical contents) that is trapped initially within LCs. The resulting LC materials self-report and self-regulate their chemical response to targeted physical, chemical and biological events in ways that can be preprogrammed through an interplay of elastic, electrical double-layer, buoyant and shear forces in diverse geometries (such as wells, films and emulsion droplets). These LC materials can carry out complex functions that go beyond the capabilities of conventional materials used for controlled microcargo release, such as optically reporting a stimulus (for example, mechanical shear stresses generated by motile bacteria) and then responding in a self-regulated manner via a feedback loop (for example, to release the minimum amount of biocidal agent required to cause bacterial cell death).Liquid crystals are used to self-report and self-regulate either continuous or transient release of droplets or microparticles trapped within them in response to thermal, chemical, mechanical or biological stimuli.

Collaboration


Dive into the Emre Bukusoglu's collaboration.

Top Co-Authors

Avatar

Nicholas L. Abbott

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xiaoguang Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Miller

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ye Zhou

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Y. K. Kim

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Pranati Mondkar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge