Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emre Ertin is active.

Publication


Featured researches published by Emre Ertin.


Proceedings of the IEEE | 2010

Sparsity and Compressed Sensing in Radar Imaging

Lee C. Potter; Emre Ertin; Jason T. Parker; Müjdat Çetin

Remote sensing with radar is typically an ill-posed linear inverse problem: a scene is to be inferred from limited measurements of scattered electric fields. Parsimonious models provide a compressed representation of the unknown scene and offer a means for regularizing the inversion task. The emerging field of compressed sensing combines nonlinear reconstruction algorithms and pseudorandom linear measurements to provide reconstruction guarantees for sparse solutions to linear inverse problems. This paper surveys the use of sparse reconstruction algorithms and randomized measurement strategies in radar processing. Although the two themes have a long history in radar literature, the accessible framework provided by compressed sensing illuminates the impact of joining these themes. Potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.


embedded and real-time computing systems and applications | 2005

ExScal: elements of an extreme scale wireless sensor network

Anish Arora; Rajiv Ramnath; Emre Ertin; Prasun Sinha; Sandip Bapat; Vinayak Naik; Vinodkrishnan Kulathumani; Hongwei Zhang; Hui Cao; Mukundan Sridharan; Santosh Kumar; Nick Seddon; Christopher J. Anderson; Ted Herman; Nishank Trivedi; Mikhail Nesterenko; Romil Shah; S. Kulkami; M. Aramugam; Limin Wang; Mohamed G. Gouda; Young-ri Choi; David E. Culler; Prabal Dutta; Cory Sharp; Gilman Tolle; Mike Grimmer; Bill Ferriera; Ken Parker

Project ExScal (for extreme scale) fielded a 1000+ node wireless sensor network and a 200+ node peer-to-peer ad hoc network of 802.11 devices in a 13km by 300m remote area in Florida, USA during December 2004. In comparison with previous deployments, the ExScal application is relatively complex and its networks are the largest ones of either type fielded to date. In this paper, we overview the key requirements of ExScal, the corresponding design of the hardware/software platform and application, and some results of our experiments.


information processing in sensor networks | 2006

Kansei: a testbed for sensing at scale

Emre Ertin; Anish Arora; Rajiv Ramnath; Mikhail Nesterenko; Vinayak Naik; Sandip Bapat; Vinod Kulathumani; Mukundan Sridharan; Hongwei Zhang; Hui Cao

The Kansei testbed at the Ohio State University is designed to facilitate research on networked sensing applications at scale. Kansei embodies a unique combination of characteristics as a result of its design focus on sensing and scaling: (i) Heterogeneous hardware infrastructure with dedicated node resources for local computation, storage, data exfiltration and back-channel communication, to support complex experimentation, (ii) Time accurate hybrid simulation engine for simulating substantially larger arrays using testbed hardware resources, (iii) High fidelity sensor data generation and real-time data and event injection, (iv) Software components and associated job control language to support complex multi-tier experiments utilizing real hardware resources and data generation and simulation engines. In this paper, we present the elements of Kansei testbed architecture, including its hardware and software platforms as well as its hybrid simulation and sensor data generation engines


information processing in sensor networks | 2003

Maximum mutual information principle for dynamic sensor query problems

Emre Ertin; John W. Fisher; Lee C. Potter

In this paper we study a dynamic sensor selection method for Bayesian filtering problems. In particular we consider the distributed Bayesian Filtering strategy given in [1] and show that the principle of mutual information maximization follows naturally from the expected uncertainty minimization criterion in a Bayesian filtering framework. This equivalence results in a computationally feasible approach to state estimation in sensor networks. We illustrate the application of the proposed dynamic sensor selection method to both discrete and linear Gaussian models for distributed tracking as well as to stationary target localization using acoustic arrays.


international conference on embedded networked sensor systems | 2011

AutoSense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field

Emre Ertin; Andrew Raij; Nathan Stohs; Mustafa al'Absi; Santosh Kumar; Somnath Mitra

The effect of psychosocial stress on health has been a central focus area of public health research. However, progress has been limited due a to lack of wearable sensors that can provide robust measures of stress in the field. In this paper, we present a wireless sensor suite called AutoSense that collects and processes cardiovascular, respiratory, and thermoregularity measurements that can inform about the general stress state of test subjects in their natural environment. AutoSense overcomes several challenges in the design of wearable sensor systems for use in the field. First, it is unobtrusively wearable because it integrates six sensors in a small form factor. Second, it demonstrates a low power design; with a lifetime exceeding ten days while continuously sampling and transmitting sensor measurements. Third, sensor measurements are robust to several sources of errors and confounds inherent in field usage. Fourth, it integrates an ANT radio for low power and integrated quality of service guarantees, even in crowded environments. The AutoSense suite is complemented with a software framework on a smart phone that processes sensor measurements received from AutoSense to infer stress and other rich human behaviors. AutoSense was used in a 20+ subject real-life scientific study on stress in both the lab and field, which resulted in the first model of stress that provides 90% accuracy.


IEEE Internet Computing | 2006

Kansei: a high-fidelity sensing testbed

Anish Arora; Emre Ertin; Rajiv Ramnath; Mikhail Nesterenko; William Leal

Hardware and software testbeds are becoming the preferred basis for experimenting with embedded wireless sensor network applications. The Kansei testbed at the Ohio State University features a heterogeneous hardware infrastructure, with dedicated node resources for local computation, storage, data retrieval, and back-channel communication. Kansei includes a time-accurate hybrid simulation engine that uses testbed hardware resources to simulate large arrays. It supports high-fidelity sensor data generation as well as real-time data and event injection. The testbed also includes software components and an associated job-control language for complex multi-tier experiments.


IEEE Transactions on Communications | 2001

Maximum-likelihood-based multipath channel estimation for code-division multiple-access systems

Emre Ertin; Urbashi Mitra; Siwaruk Siwamogsatham

The problem of estimating the channel parameters of a new user in a multiuser code-division multiple-access (CDMA) communication system is addressed. It is assumed that the new user transmits training data over a slowly fading multipath channel. The proposed algorithm is based on maximum-likelihood estimation of the channel parameters. First, an asymptotic expression for the likelihood function of channel parameters is derived and a re-parametrization of this likelihood function is proposed. In this re-parametrization, the channel parameters are combined into a discrete time channel filter of symbol period length. Then, expectation-maximization algorithm and alternating projection algorithm-based techniques are considered to extract channel parameters from the estimated discrete channel filter, to maximize the derived asymptotic likelihood function. The performance of the proposed algorithms is evaluated through simulation studies. In addition, the proposed algorithms are compared to previously suggested subspace techniques for multipath channel estimation.


Proceedings of SPIE, the International Society for Optical Engineering | 2007

GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures

Emre Ertin; Christian D. Austin; Samir Sharma; Randolph L. Moses; Lee C. Potter

We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.


IEEE Journal of Selected Topics in Signal Processing | 2010

On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection

Christian D. Austin; Randolph L. Moses; Joshua N. Ash; Emre Ertin

We examine the relationship between sparse linear reconstruction and the classic problem of continuous parametric modeling. In sparse reconstruction, one wishes to recover a sparse amplitude vector from a measurement that is described as a linear combination of a small number of discrete additive components. Recent results in the compressive sensing literature have provided fast sparse reconstruction algorithms with guaranteed performance bounds for problems with certain structure. In this paper, we show an explicit connection between sparse reconstruction and parameter/order estimation and demonstrate how sparse reconstruction may be used to solve model order selection and parameter estimation problems. The structural assumption used in compressive sensing to guarantee reconstruction performance-the Restricted Isometry Property-is not satisfied in the general parameter estimation context. Nonetheless, we develop a method for selecting sparsity parameters such that sparse reconstruction mimics classic order selection criteria such as Akaike information criterion (AIC) and Bayesian information criterion (BIC). We compare the performance of the sparse reconstruction approach with traditional model order selection/parameter estimation techniques for a sinusoids-in-noise example. We find that the two methods have comparable performance in most cases, and that sparse linear modeling performs better than traditional model-based parameter/order estimation for closely spaced sinusoids with low signal-to-noise ratio.


IEEE Journal of Selected Topics in Signal Processing | 2011

Sparse Signal Methods for 3-D Radar Imaging

Christian D. Austin; Emre Ertin; Randolph L. Moses

Synthetic aperture radar (SAR) imaging is a valuable tool in a number of defense surveillance and monitoring applications. There is increasing interest in 3-D reconstruction of objects from radar measurements. Traditional 3-D SAR image formation requires data collection over a densely sampled azimuth-elevation sector. In practice, such a dense measurement set is difficult or impossible to obtain, and effective 3-D reconstructions using sparse measurements are sought. This paper presents wide-angle 3-D image reconstruction approaches for object reconstruction that exploit reconstruction sparsity in the signal domain to ameliorate the limitations of sparse measurements. Two methods are presented; first, we use ℓp penalized (for p ≤ 1) least squares inversion, and second, we utilize tomographic SAR processing to derive wide-angle 3-D reconstruction algorithms that are computationally attractive but apply to a specific class of sparse aperture samplings. All approaches rely on high-frequency radar backscatter phenomenology so that sparse signal representations align with physical radar scattering properties of the objects of interest. We present full 360° 3-D SAR visualizations of objects from air-to-ground X-band radar measurements using different flight paths to illustrate and compare the two approaches.

Collaboration


Dive into the Emre Ertin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin L. Priddy

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Hui Cao

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge