Emre O. Polat
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Emre O. Polat.
Applied Physics Letters | 2011
Tuba Öznülüer; Ercag Pince; Emre O. Polat; Osman Balci; Omer Salihoglu; Coskun Kocabas
Here we report chemical vapor deposition of graphene on gold surface at ambient pressure. We studied effects of the growth temperature, pressure, and cooling process on the growngraphene layers. The Raman spectroscopy of the samples reveals the essential properties of the graphenegrown on gold surface. In order to characterize the electrical properties of the growngraphene layers, we have transferred them on insulating substrates and fabricated field effect transistors. Owing to distinctive properties of gold, the ability to growgraphene layers on gold surface could open new applications of graphene in electrochemistry and spectroscopy.
Nano Letters | 2013
Emre O. Polat; Coskun Kocabas
Optical modulators are commonly used in communication and information technology to control intensity, phase, or polarization of light. Electro-optic, electroabsorption, and acousto-optic modulators based on semiconductors and compound semiconductors have been used to control the intensity of light. Because of gate tunable optical properties, graphene introduces new potentials for optical modulators. The operation wavelength of graphene-based modulators, however, is limited to infrared wavelengths due to inefficient gating schemes. Here, we report a broadband optical modulator based on graphene supercapacitors formed by graphene electrodes and electrolyte medium. The transparent supercapacitor structure allows us to modulate optical transmission over a broad range of wavelengths from 450 nm to 2 μm under ambient conditions. We also provide various device geometries including multilayer graphene electrodes and reflection type device geometries that provide modulation of 35%. The graphene supercapacitor structure together with the high-modulation efficiency can enable various active devices ranging from plasmonics to optoelectronics.
Nature Communications | 2015
Osman Balci; Emre O. Polat; Nurbek Kakenov; Coskub Kocabas
Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.
Scientific Reports | 2015
Emre O. Polat; Osman Balci; Coskun Kocabas
Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneously offers all key requirements for practical applications; high-contrast optical modulation over a broad spectrum, good electrical conductivity and mechanical flexibility. Our method relies on electro-modulation of interband transition of MLG via intercalation of ions into the graphene layers. The electrical and optical characterizations reveal the key features of the intercalation process which yields broadband optical modulation up to 55 per cent in the visible and near-infrared. We illustrate the promises of the method by fabricating reflective/transmissive electrochromic devices and multi-pixel display devices. Simplicity of the device architecture and its compatibility with the roll-to-roll fabrication processes, would find wide range of applications including smart windows and display devices. We anticipate that this work provides a significant step in realization of graphene based optoelectronics.
Advanced Robotics | 2015
Nivasan Yogeswaran; Wenting Dang; William Taube Navaraj; Dhayalan Shakthivel; Saleem Khan; Emre O. Polat; Shoubhik Gupta; Hadi Heidari; Mohsen Kaboli; Leandro Lorenzelli; Gordon Cheng; Ravinder Dahiya
Flexible electronics has huge potential to bring revolution in robotics and prosthetics as well as to bring about the next big evolution in electronics industry. In robotics and related applications, it is expected to revolutionise the way with which machines interact with humans, real-world objects and the environment. For example, the conformable electronic or tactile skin on robot’s body, enabled by advances in flexible electronics, will allow safe robotic interaction during physical contact of robot with various objects. Developing a conformable, bendable and stretchable electronic system requires distributing electronics over large non-planar surfaces and movable components. The current research focus in this direction is marked by the use of novel materials or by the smart engineering of the traditional materials to develop new sensors, electronics on substrates that can be wrapped around curved surfaces. Attempts are being made to achieve flexibility/stretchability in e-skin while retaining a reliable operation. This review provides insight into various materials that have been used in the development of flexible electronics primarily for e-skin applications.
Scientific Reports | 2015
Emre O. Polat; Osman Balci; Nurbek Kakenov; Hasan Burkay Uzlu; Coskun Kocabas; Ravinder Dahiya
This work demonstrates an attractive low-cost route to obtain large area and high-quality graphene films by using the ultra-smooth copper foils which are typically used as the negative electrodes in lithium-ion batteries. We first compared the electronic transport properties of our new graphene film with the one synthesized by using commonly used standard copper foils in chemical vapor deposition (CVD). We observed a stark improvement in the electrical performance of the transistors realized on our graphene films. To study the optical properties on large area, we transferred CVD based graphene to transparent flexible substrates using hot lamination method and performed large area optical scanning. We demonstrate the promise of our high quality graphene films for large areas with ~400 cm2 flexible optical modulators. We obtained a profound light modulation over a broad spectrum by using the fabricated large area transparent graphene supercapacitors and we compared the performance of our devices with the one based on graphene from standard copper. We propose that the copper foils used in the lithium-ion batteries could be used to obtain high-quality graphene at much lower-cost, with the improved performance of electrical transport and optical properties in the devices made from them.
Nano Letters | 2014
Mehmet Copuroglu; Pinar Aydogan; Emre O. Polat; Coskun Kocabas; Sefik Suzer
In this Letter, we report gate-tunable X-ray photoelectron emission from back-gated graphene transistors. The back-gated transistor geometry allows us to study photoemission from graphene layer and the dielectric substrate at various gate voltages. Application of gate voltage electrostatically dopes graphene and shifts the binding energy of photoelectrons in various ways depending on the origin and the generation mechanism(s) of the emitted electrons. The gate-induced shift of the Fermi energy of graphene alters the binding energy of the C 1s electrons, whereas the electric field of the gate electrodes shift the binding energy of core electrons emitted from the gate dielectric underneath the graphene layer. The gradual change of the local potential through depths of the gate dielectric provides quantitative electrical information about buried interfaces. Our results suggest that gate-tunable photoemission spectra with chemically specific information linked with local electrical properties opens new routes to elucidating operation of devices based especially on layered materials.
ACS Photonics | 2016
Emre O. Polat; Hasan Burkay Uzlu; Osman Balci; Nurbek Kakenov; Evgeniya Kovalska; Coskun Kocabas
The realization of optoelectronic devices on paper has been an outstanding challenge due to the large surface roughness and incompatible nature of paper with optical materials. Here, we demonstrate a new class of optoelectronic devices on a piece of printing paper using graphene as an electrically reconfigurable optical medium. Our approach relies on electro-modulation of optical properties of multilayer graphene on paper via blocking the interband electronic transitions. The paper based devices yield high optical contrast in the visible spectrum with a fast response. Pattering graphene into multiple pixels, folding paper into three-dimensional shapes or printing colored ink on paper substrates enable us to demonstrate novel optoelectronic devices which cannot be realized with wafer-based techniques.
Optics Letters | 2014
Isinsu Baylam; Melisa N. Cizmeciyan; Sarper Ozharar; Emre O. Polat; Coskun Kocabas; Alphan Sennaroglu
We report, for the first time to our knowledge, the demonstration of a graphene supercapacitor as a voltage-controlled saturable absorber for femtosecond pulse generation from a solid-state laser. By applying only a few volts of bias, the Fermi level of the device could be shifted to vary the insertion loss, while maintaining a sufficient level of saturable absorption to initiate mode-locked operation. The graphene supercapacitor was operated at bias voltages of 0.5-1V to generate sub-100 fs pulses at a pulse repetition rate of 4.51 MHz from a multipass-cavity Cr(4+):forsterite laser operating at 1255 nm. The nonlinear optical response of the graphene supercapacitor was further investigated by using pump-probe spectroscopy.
ACS Nano | 2014
Ebrima Tunkara; Cemal Albayrak; Emre O. Polat; Coskun Kocabas; Ömer Dag
Proton conducting gel electrolytes are very important components of clean energy devices. Phosphoric acid (PA, H(3)PO(4) · H2O) is one of the best proton conductors, but needs to be incorporated into some matrix for real device applications, such as into lyotropic liquid crystalline mesophases (LLCMs). Herein, we show that PA and nonionic surfactant (NS, C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)) molecules self-assemble into PANS-LLCMs and display high proton conductivity. The content of the PANS-LLCM can be as high 75% H(3)PO(4) · H2O and 25% 10-lauryl ether (C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)), and the mesophase follows the usual LLC trend, bicontinuous cubic (V1)-normal hexagonal (H1)-micelle cubic (I1), by increasing the PA concentration in the media. The PANS-LLCMs are stable under ambient conditions, as well as at high (up to 130 °C) and low (-100 °C) temperatures with a high proton conductivity, in the range of 10(-2) to 10(-6) S/cm. The mesophase becomes a mesostructured solid with decent proton conductivity below -100 °C. The mesophase can be used in many applications as a proton-conducting media as well as a phosphate source for the synthesis of various metal phosphates. As an application, we demonstrate a graphene-based optical modulator using supercapacitor structure formed by graphene electrodes and a PANS electrolyte. A PANS-LLC electrolyte-based supercapacitor enables efficient optical modulation of graphene electrodes over a range of wavelengths, from 500 nm to 2 μm, under ambient conditions.