Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enam Khalil is active.

Publication


Featured researches published by Enam Khalil.


ACS Nano | 2011

Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles.

Géraldine Le Duc; Imen Miladi; Christophe Alric; Pierre Mowat; Elke Bräuer-Krisch; Audrey Bouchet; Enam Khalil; Claire Billotey; Marc Janier; François Lux; Thierry Epicier; Pascal Perriat; Stéphane Roux; Olivier Tillement

Ultrasmall gadolinium-based nanoparticles (GBNs) induce both a positive contrast for magnetic resonance imaging and a radiosentizing effect. The exploitation of these characteristics leads to a greater increase in lifespan of rats bearing brain tumors since the radiosensitizing effect of GBNs can be activated by X-ray microbeams when the gadolinium content is, at the same time, sufficiently high in the tumor and low in the surrounding healthy tissue. GBNs exhibit therefore an interesting potential for image-guided radiotherapy.


International Journal of Radiation Oncology Biology Physics | 2010

Preferential Effect of Synchrotron Microbeam Radiation Therapy on Intracerebral 9L Gliosarcoma Vascular Networks

Audrey Bouchet; Benjamin Lemasson; Géraldine Le Duc; Cécile Maisin; Elke Bräuer-Krisch; Erik Albert Siegbahn; Luc Renaud; Enam Khalil; Chantal Rémy; Cathy Poillot; Alberto Bravin; Jean A. Laissue; Emmanuel L. Barbier; Raphaël Serduc

PURPOSE Synchrotron microbeam radiation therapy (MRT) relies on spatial fractionation of the incident photon beam into parallel micron-wide beams. Our aim was to analyze the effects of MRT on normal brain and 9L gliosarcoma tissues, particularly on blood vessels. METHODS AND MATERIALS Responses to MRT (two arrays, one lateral, one anteroposterior (2 × 400 Gy), intersecting orthogonally in the tumor region) were studied during 6 weeks using MRI, immunohistochemistry, and vascular endothelial growth factor Western blot. RESULTS MRT increased the median survival time of irradiated rats (×3.25), significantly increased blood vessel permeability, and inhibited tumor growth; a cytotoxic effect on 9L cells was detected 5 days after irradiation. Significant decreases in tumoral blood volume fraction and vessel diameter were measured from 8 days after irradiation, due to loss of endothelial cells in tumors as detected by immunochemistry. Edema was observed in the normal brain exposed to both crossfired arrays about 6 weeks after irradiation. This edema was associated with changes in blood vessel morphology and an overexpression of vascular endothelial growth factor. Conversely, vascular parameters and vessel morphology in brain regions exposed to one of the two arrays were not damaged, and there was no loss of vascular endothelia. CONCLUSIONS We show for the first time that preferential damage of MRT to tumor vessels versus preservation of radioresistant normal brain vessels contributes to the efficient palliation of 9L gliosarcomas in rats. Molecular pathways of repair mechanisms in normal and tumoral vascular networks after MRT may be essential for the improvement of such differential effects on the vasculature.


Journal of Applied Microbiology | 2000

Microemulsions are membrane-active, antimicrobial, self-preserving systems

I.S.I. Al-Adham; Enam Khalil; N.D. Al-Hmoud; Martin Kierans; Phillip J. Collier

Microemulsions are physically stable oil/water systems that have potential use as delivery systems for many pharmaceuticals which are normally of limited use due to their hydrophobicity, toxicity or inability to access the site of action. It has been suggested that microemulsions are self‐preserving antimicrobials in their own right, although there is little evidence to support this. In this experiment, microemulsions of various compositions were formulated and tested for their stability and antimicrobial action. The physical stability of the different microemulsions was assessed by centrifugation at 4000 g and by storage in a water bath at 37 °C for one month, during which no phase separation was observed. The antimicrobial activity of the microemulsions was tested using the compendial method, observation of the kinetics of killing, and transmission electron microscopy (TEM) of microemulsion‐exposed cultures of Pseudomonas aeruginosa PA01. These latter experiments on Ps. aeruginosa indicated distinct signs of membrane disruption. The results indicated that the microemulsions are self‐preserved, and that their killing of microbial cultures is very rapid and may be the result of membrane activity.


Journal of Ethnopharmacology | 1997

Evaluation of the gastroprotective effect of Laurus nobilis seeds on ethanol induced gastric ulcer in rats

Fatma U. Afifi; Enam Khalil; Salah Tamimi; Ahmad M. Disi

The possible antiulcerogenic activity of Laurus nobilis seeds was tested on experimentally (ethanol) induced gastric ulcer in rats. The results indicated antiulcerogenic activity for 20 and 40% aqueous extracts as well as for the oily fraction of these seeds. In acute toxicity studies, the aqueous extract was found safe with LD50 compared to oil LD50 0.33 ml/kg body weight.


Journal of Ethnopharmacology | 1999

Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs

Fatma U. Afifi; Enam Khalil; S Abdalla

The phytochemical investigation of Arum palaestinum resulted in the isolation of two flavone C-glucosides, namely isoorientin (luteolin 6-C-glucoside) and vitexin (apigenin 8-C glucoside). The effects of isoorientin on rat isolated aorta, ileum, trachea and uterus and on guinea-pig uterus were studied. Isoorientin (10(-7)M-6 x 10(-4)M) caused concentration-dependent inhibition of the amplitude and the frequency of the phasic contractions of the rat and guinea-pig uterus but did not affect the isolated aorta, ileum or trachea. The results were discussed in relation to the effects of its aglycone luteolin reported in the literature.


European Journal of Pharmaceutics and Biopharmaceutics | 2002

Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate

Al-Sayed Sallam; Enam Khalil; Hussain Ibrahim; Ibtisam Freij

Glyceryl monooleate is a Food and Drug Administration-approved food additive which has the ability to form various liquid crystalline phases in the presence of various amounts of water. The unique properties of the cubic liquid crystalline phase that result upon the presence of excess body fluids at body temperature were utilized to formulate an oral dosage form containing furosemide as the model drug. The aim was to develop a formula, which has both bioadhesive and sustained release properties of the resultant cubic phase, so that increasing gastric residence time to improve bioavailability of the drug and at the same time obtaining a sustained action. The system was found to be affected by the limited solubility of furosemide in both the carrier system and the pH of surrounding medium. As a consequence, the addition of some solubility modifiers was investigated in order to obtain the desired properties of the expected liquid crystalline system.


Letters in Applied Microbiology | 2003

Microemulsions are highly effective anti-biofilm agents

I.S.I. Al-Adham; N. D. Al-Hmoud; Enam Khalil; Martin Kierans; Phillip J. Collier

Aims: The demonstration of the antibiofilm effects of pharmaceutical microemulsions.


Drug Development and Industrial Pharmacy | 1998

Evaluation of Fast Disintegrants in Terfenadine Tablets Containing a Gas-Evolving Disintegrant

E. Sallam; H. Ibrahim; R. Abu Dahab; M. Shubair; Enam Khalil

Effects of four fast disintegrants on the dissolution of terfenadine tablets containing the gas-evolving disintegrant, CaCO3, were evaluated. In addition, effects of presence of starch along with the fast disintegrants on the dissolution of the tablets were examined. Dissolution data were treated to give dissolution parameters which reflected efficiency of the disintegrant combinations. The four fast disintegrants improved disintegration/dissolution of the original formulation. The relative efficiency of improvement was in the order crospovidone > Ac-Di-Sol > Primojel > low substituted hydroxypropylcellulose. The presence of starch advertently affected the role of the fast disintegrants. Scanning electron microscope studies revealed that starch covered the drug-containing granules and other particles of the tablet. pH changes during dissolution of representative tablets in 0.1 N HCl solutions were determined at specific time intervals. The progressive decrease in rates of acid consumption as a function of the amount of starch, along with the SEM studies, suggested that a barrier existed around the tablet particles. The barrier was generated by the swelled starch grains and was responsible for the loss of the dissolution-improving capacity of the fast disintegrants. Furthermore, the barrier interfered with the diffusion of the hydronium ions and therefore, impaired the function of the disintegrant combination.


Drug Development and Industrial Pharmacy | 1999

Interaction of Two Diclofenac Acid Salts with Copolymers of Ammoniomethacrylate: Effect of Additives and Release Profiles

Enam Khalil; Al-Sayed Sallam

The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.


Drug Development and Industrial Pharmacy | 2000

Aqueous solubility of diclofenac diethylamine in the presence of pharmaceutical additives: a comparative study with diclofenac sodium.

Enam Khalil; S. Najjar; Al-Sayed Sallam

Aqueous solubility of diclofenac diethylamine (DDEA), a nonsteroidal anti-inflammatory drug currently formulated as a topical emulgel, was studied in the presence of pharmaceutical additives and compared with diclofenac sodium (DS). Electrolytes at low concentrations exhibited a salting-in effect on DDEA with peak solubility that was attributed to the association of DDEA into micelles, followed by a salting-out effect at higher concentrations, by which structure formation by DDEA molecules increased and precipitation occurred. For DS, which is not capable of forming micelles, the salting-out effect was dominant due to the common ion effect. Cosolvents displayed significant enhancement in solubility of both salts except glycerol, which showed a slight increase in solubility of DDEA and a decrease in solubility of DS due to transformation into the less soluble hydrate form. Ethanol and polyethylene glycol (PEG) 400 cosolvent systems at all concentrations showed positive deviations from the log-linear solubility equation. In the case of propylene glycol (PG) cosolvent systems, negative deviations were observed at low volume fractions of cosolvent, while positive deviations were observed at high volume fractions of cosolvent for DS and DDEA. The parent drug, being less ionizable and highly nonpolar, showed negative deviations up to 90% PG content. Thus, the positive deviations for DS and DDEA could be attributed to the more ionizable carboxylic group and its higher ability for hydrogen bonding at higher fractions of cosolvent. Polyvinylpyrrolidone (PVP) and PEG4000 or PEG6000 enhanced the solubility of DS and DDEA, with PVP exerting higher solubilizing efficiency and DS showing better solubility than DDEA. Solubilities of DS in Tween 80 (T80) and Pluronic F-127 (PF127) aqueous solutions were almost similar, while the solubility of DDEA in the presence of T80 was higher than the solubility in the presence of PF127. DS appeared to be located more in the polyoxyethylene mantle of the micelles, while DDEA was located more in the core of the micelles.

Collaboration


Dive into the Enam Khalil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Bouchet

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Géraldine Le Duc

European Synchrotron Radiation Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge