Enav Corem-Salkmon
Bar-Ilan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enav Corem-Salkmon.
International Journal of Nanomedicine | 2011
Enav Corem-Salkmon; Zvi Ram; Dianne Daniels; Benny Perlstein; Sharona Salomon; Gregory Tamar; Ran Shneor; David Guez; Shlomo Margel; Yael Mardor
Convection-enhanced delivery (CED) is a novel approach for delivering drugs directly into brain tumors by intracranial infusion, enabling the distribution of high drug concentrations over large tissue volumes. This study was designed to present a method for binding methotrexate (MTX) to unique crystalline, highly ordered and superparamagnetic maghemite nanoparticles via human serum albumin (HSA) coating, optimized for CED treatments of gliomas. Naked nanoparticles and HSA- or polyethylene glycol (PEG)-coated nanoparticles with/without MTX were studied. In vitro results showed no toxicity and a similar cell-kill efficacy of the MTX-loaded particles via HSA coating to that of free MTX, while MTX-loaded particles via PEG coating showed low efficacy. In vivo, the PEG-coated nanoparticles provided the largest distributions in normal rat brain and long clearance times, but due to their low efficacy in vitro, were not considered optimal. The naked nanoparticles provided the smallest distributions and shortest clearance times. The HSA-coated nanoparticles (with/without MTX) provided good distributions and long clearance times (nearly 50% of the distribution volume remained in the brain 3 weeks post treatment). No MTX-related toxicity was noted. These results suggest that the formulation in which HSA was bound to our nanoparticles via a unique precipitation method, and MTX was bound covalently to the HSA, could enable efficient and stable drug loading with no apparent toxicity. The cell-kill efficacy of the bound MTX remained similar to that of free MTX, and the nanoparticles presented efficient distribution volumes and slow clearance times in vivo, suggesting that these particles are optimal for CED.
Materials Science and Engineering: C | 2013
Sarit Cohen; Michal Pellach; Yossi Kam; Igor Grinberg; Enav Corem-Salkmon; Abraham Rubinstein; Shlomo Margel
Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy.
International Journal of Nanomedicine | 2012
Enav Corem-Salkmon; Benny Perlstein; Shlomo Margel
Background Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near- infrared (NIR) fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices. Methods and results NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA), were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol) spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin nanoparticles. Conclusion Conjugation of peanut agglutinin or αCEA to the nanoparticles significantly increased the fluorescence intensity of the tagged colon tumor tissues relative to the nonconjugated nanoparticles.
International Journal of Nanomedicine | 2014
Michal Kolitz-Domb; Enav Corem-Salkmon; Igor Grinberg; Shlomo Margel
Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with colon cancer. Near-infrared (NIR) fluorescent nanoparticles are promising candidates for use as contrast agents for tumor detection. Using NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum: lower autofluorescence of biological tissues and lower absorbance and, consequently, deeper penetration into biomatrices. The present study describes the preparation of new NIR fluorescent proteinoid-poly(L-lactic acid) (PLLA) nanoparticles. For this purpose, a P(EF-PLLA) random copolymer was prepared by thermal copolymerization of L-glutamic acid (E) with L-phenylalanine (F) and PLLA. Under suitable conditions, this proteinoid-PLLA copolymer can self-assemble to nanosized hollow particles of relatively narrow size distribution. This self-assembly process was used for encapsulation of the NIR dye indocyanine green. The encapsulation process increases significantly the photostability of the dye. These NIR fluorescent nanoparticles were found to be stable and nontoxic. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline containing 4% human serum albumin was not detected. Tumor-targeting ligands such as peanut agglutinin and anticarcinoembryonic antigen antibodies were covalently conjugated to the surface of the NIR fluorescent P(EF-PLLA) nanoparticles, thereby increasing the fluorescent signal of tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent P(EF-PLLA) nanoparticles was demonstrated in a chicken embryo model. In future work, we plan to extend this study to a mouse model, as well as to encapsulate a cancer drug such as doxorubicin within these nanoparticles for therapeutic applications.
Journal of Nanobiotechnology | 2016
Safra Rudnick-Glick; Enav Corem-Salkmon; Igor Grinberg; Shlomo Margel
BackgroundMost primary and metastatic bone tumors demonstrate increased osteoclast activity and bone resorption. Current treatment is based on a combination of surgery, radiotherapy and chemotherapy. Severe side effects are associated with chemotherapy due to use of high dosage and nonspecific uptake. Bisphosphonates have a strong affinity to Ca2+ ions and are widely used in the treatment of bone disorders.ResultsWe have engineered a unique biodegradable bisphosphonate nanoparticle (NPs) bearing two functional surface groups: (1) primary amine groups for covalent attachment of a dye/drug (e.g. NIR dye Cy 7 or doxorubicin); (2) bisphosphonate groups for targeting and chelation to bone hydroxyapatite. In addition, these engineered NPs contain high polyethyleneglycol (PEG) concentration in order to increase their blood half life time. In vitro experiments on Saos-2 human osteosarcoma cell line, demonstrated that at a tenth of the concentration, doxorubicin-conjugated bisphosphonate NPs achieved a similar uptake to free doxorubicin. In vivo targeting experiments using the NIR fluorescence bisphosphonate NPs on both Soas-2 human osteosarcoma xenograft mouse model and orthotopic bone metastases mCherry-labeled 4T1 breast cancer mouse model confirmed specific targeting. In addition, therapeutic in vivo experiments using doxorubicin-conjugated bisphosphonate NPs demonstrated a 40% greater inhibition of tumor growth in Saos-2 human osteosarcoma xenograft mouse model when compared to free doxorubicin.ConclusionsIn this research we have shown the potential use of doxorubicin-conjugated BP NPs for the targeting and treatment of primary and metastatic bone tumors. The targeted delivery of doxorubicin to the tumor significantly increased the efficacy of the anti-cancer drug, thus enabling the effective use of a lower concentration of doxorubicin. Furthermore, the targeting ability of the BP NPs in an orthotopic xenograft mouse model reinforced our findings that these BP NPs have the potential to be used for the treatment of primary and metastatic bone cancer.
Journal of Nanomedicine & Nanotechnology | 2015
Itay Levy; Igor Grinberg; Benny Perlstein; Enav Corem-Salkmon; Shlomo Margel
Although much progress has been made in the field of cancer therapy, cancer remains one of the leading causes of death in the western world. Here we have designed and studied a unique type of composite multi-functional near IR (NIR) fluorescent iron oxide (IO) nanoparticles (NPs) of narrow size distribution for tumor targeting and therapy. These NPs were prepared by nucleation followed by controlled growth of thin films of IO onto Cy7-conjugated gelatin nuclei and coated with human serum albumin (HSA) by a thermal precipitation process. The hydrodynamic diameter of these core-shell NPs could be easily controlled by altering the precipitation reaction temperature. For targeting and an anti-cancer effect, we conjugated the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) cytokine to the surface of the NIR fluorescent IO/HSA NPs via a polyethylene glycol (3 kDa) linker. The conjugated TRAIL exhibited enhanced and prolonged anti-cancer activity in both human glioblastoma multiforme and colon cancer cell lines. Further, the combination of these IO/HSA-TRAIL NPs with the commonly used chemotherapeutic drug doxorubicin resulted in a synergistic anti-cancer effect on these cancer cell lines. In addition, we also clearly demonstrated by topically and IV administrations the specific targeting effect and the synergistic therapy effect of the NIR fluorescent NPs in-ovo, by using a chicken embryo model of tumors derived from the various human cancer cell lines.
Proceedings of SPIE | 2015
Safra Rudnick-Glick; Enav Corem-Salkmon; Igor Grinberg; Eran Gluz; Shlomo Margel
Osteosarcoma (OS) is amongst the most commonly diagnosed bone tumors occurring in adolescence, young adults and adults over the age of 65. Current treatment is based on a combination of surgery and chemotherapy. Chemotherapy has improved the survival rate, however it is associated with severe side effects due to the use of high dosages, nonspecific uptake and poor bone blood supply. At present bisphosphonates (BP) are widely used in the treatment of bone disorders including OS. We have engineered a unique biodegradable BP nanoparticle that possesses a dual functionality: 1) covalent attachment of a dye (e.g., NIR dye) or drug to the nanoparticles through the primary amine groups on the surface of the nanoparticle; 2) chelation to the bone mineral hydroxyapatite through the BP on the surface of the nanoparticle. Due to a high concentration of PEG in the BP nanoparticles they possess a relatively long plasma half-life time. Therefore, the nanoparticle has potential for use both in diagnosis and therapy of OS. Doxorubicin was conjugated to the free amine on the surface of the BP nanoparticles. In vitro experiments on osteosarcoma cells demonstrated that the doxorubicin-conjugated BP nanoparticles possess a higher efficacy than the free doxorubicin. Further investigation in vivo in a chicken embryo model confirmed that the doxorubicin-conjugated nanoparticle was significantly more effective in inhibiting tumor growth compared to free doxorubicin at a similar concentration. Additionally, we have shown that these BP nanoparticles preferentially target OS tumor tissue, thus increasing anti-cancer drug bioavailability at targeted site.
Journal of Nanobiotechnology | 2014
Michal Kolitz-Domb; Igor Grinberg; Enav Corem-Salkmon; Shlomo Margel
Journal of Nanobiotechnology | 2015
Itay Levy; Ifat Sher; Enav Corem-Salkmon; Ofra Ziv-Polat; Amilia Meir; Avraham J. Treves; Arnon Nagler; Ofra Kalter-Leibovici; Shlomo Margel; Ygal Rotenstreich
Journal of Polymer Science Part A | 2013
Eran Gluz; Igor Grinberg; Enav Corem-Salkmon; Dana M. Mizrahi; Shlomo Margel