Endang Purwantini
University of Illinois at Urbana–Champaign
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Endang Purwantini.
Biochimica et Biophysica Acta | 2000
Biswarup Mukhopadhyay; Endang Purwantini
This is the first report on the purification and characterization of an anaplerotic enzyme from a Mycobacterium. The anaplerotic reactions play important roles in the biochemical differentiation of mycobacteria into non-replicating stages. We have purified and characterized a pyruvate carboxylase (PYC) from Mycobacterium smegmatis and cloned and sequenced its gene. We have developed a very rapid and efficient purification protocol that provided PYC with very high specific activities (up to 150 U/mg) that remained essentially unchanged over a month. The enzyme was found to be a homomultimer of 121 kDa subunits, mildly thermophilic, absolutely dependent on acyl-CoAs for activity and inhibited by ADP, by excess Mg(2+), Co(2+), and Mn(2+), by aspartate, but not by glutamate and alpha-ketoglutarate. Supplementation of minimal growth medium with aspartate did not lower the cellular PYC level, rather doubled it; with glutamate the level remained unchanged. These observations would not fit the idea that the M. smegmatis enzyme fulfills a straightforward anaplerotic function; in a closely related organism, Corynebacterium glutamicum, PYC is the major anaplerotic enzyme. Growth on glucose provided 2-fold higher cellular PYC level than that observed with glycerol. The PYCs of M. smegmatis and Mycobacterium tuberculosis were highly homologous to each other. In M. smegmatis, M. tuberculosis and M. lepra, pyc was flanked by a putative methylase and a putative integral membrane protein genes in an identical operon-like arrangement. Thus, M. smegmatis could serve as a model for studying PYC-related physiological aspects of mycobacteria. Also, the ease of purification and the extraordinary stability could make the M. smegmatis enzyme a model for studying the structure-function relationships of PYCs in general. It should be noted that no crystal structure is available for this enzyme of paramount importance in all three domains of life, archaea, bacteria, and eukarya.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Endang Purwantini; Biswarup Mukhopadhyay
In mycobacteria, F420, a deazaflavin derivative, acts as a hydride transfer coenzyme for an F420-specific glucose-6-phosphate dehydrogenase (Fgd). Physiologically relevant reactions in the mycobacteria that use Fgd-generated reduced F420 (F420H2) are unknown. In this work, F420H2 was found to be oxidized by NO only in the presence of oxygen. Further analysis demonstrated that NO2, produced from NO and O2, was the oxidant. UV-visible spectroscopic and NO-sensor-based analyses proved that F420H2 reduced NO2 to NO. This reaction could serve as a defense system for Mycobacterium tuberculosis, which is more sensitive to NO2 than NO under aerobic conditions. Activated macrophages produce NO, which in acidified phagosomes is converted to NO2. Hence, by converting NO2 back to NO with F420H2, M. tuberculosis could decrease the effectiveness of antibacterial action of macrophages; such defense would correspond to active tuberculosis conditions where the bacterium grows aerobically. This hypothesis was consistent with the observation that a mutant strain of Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, which either did not produce or could not reduce F420, was ≈4-fold more sensitive to NO2 than the wild-type strain. The phenomenon is reminiscent of the anticancer activity of γ-tocopherol, which reduces NO2 to NO and protects human cells from NO2-induced carcinogenesis.
Applied and Environmental Microbiology | 2006
Huafang Lai; Jessica L. Kraszewski; Endang Purwantini; Biswarup Mukhopadhyay
ABSTRACT Pyruvate carboxylase (PYC) is an ecologically, medically, and industrially important enzyme. It is widespread in all three domains of life, the archaea, bacteria, and eukarya. PYC catalyzes ATP-dependent carboxylation of pyruvate to oxaloacetate. Detailed structure-function studies of this enzyme have been hampered due to the unavailability of a facile recombinant overexpression system. Except for the α4 enzyme from a thermophilic Bacillus species, Escherichia coli has been unsuitable for overexpression of PYCs. We show that a Pseudomonas aeruginosa strain carrying the T7 polymerase gene can serve as a host for the overexpression of Mycobacterium smegmatis α4 PYC and Pseudomonas aeruginosa α4β4 PYC under the control of the T7 promoter from a broad-host-range conjugative plasmid. Overexpression occurred both in aerobic (LB medium) and nitrate-respiring anaerobic (LB medium plus glucose and nitrate) cultures. The latter system presented a simpler option because it involved room temperature cultures in stationary screw-cap bottles. We also developed a P. aeruginosa Δpyc strain that allowed the expression of recombinant PYCs in the absence of the native enzyme. Since P. aeruginosa can be transformed genetically and lysed for cell extract preparation rather easily, our system will facilitate site-directed mutagenesis, kinetics, X-ray crystallographic, and nuclear magnetic resonance-based structure-function analysis of PYCs. During this work we also determined that, contrary to a previous report (C. K. Stover et al., Nature 406:959-964, 2000), the open reading frame (ORF) PA1400 does not encode a PYC in P. aeruginosa. The α4β4 PYC of this organism was encoded by the ORFs PA5436 and PA5435.
Applied and Environmental Microbiology | 2008
Parthiban Rajasekaran; Mohamed N. Seleem; Andrea Contreras; Endang Purwantini; Gerhardt G. Schurig; Nammalwar Sriranganathan; Stephen M. Boyle
ABSTRACT To avoid potentiating the spread of an antibiotic resistance marker, a plasmid expressing a leuB gene and a heterologous antigen, green fluorescent protein (GFP), was shown to complement a leucine auxotroph of cattle vaccine strain Brucella abortus RB51, which protected CD1 mice from virulent B. abortus 2308 and elicited GFP antibodies.
Journal of Bacteriology | 1998
Endang Purwantini; Lacy Daniels
Journal of Bacteriology | 2001
Biswarup Mukhopadhyay; Endang Purwantini; Cynthia L. Kreder; Ralph S. Wolfe
Archive | 1998
Endang Purwantini; Lacy Daniels
Journal of Bacteriology | 2018
Endang Purwantini; Usha Loganathan; Biswarup Mukhopadhyay
Genome Announcements | 2017
Yusuf Sofyan Efendi; Dwi Susanti; Erman Tritama; Michelle Lueders Pasier; Gilang Nadia Niwan Putri; Sugeng Raharso; Iskandar; Pingkan Aditiawati; Ernawati Arifin Giri-Rachman; Biswarup Mukhopadhyay; Endang Purwantini
Journal of Bacteriology | 2016
Endang Purwantini; Lacy Daniels; Biswarup Mukhopadhyay; T. M. Henkin