Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ender Karaca is active.

Publication


Featured researches published by Ender Karaca.


Cell | 2014

A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.

Shinya Yamamoto; Manish Jaiswal; Wu Lin Charng; Tomasz Gambin; Ender Karaca; Ghayda M. Mirzaa; Wojciech Wiszniewski; Hector Sandoval; Nele A. Haelterman; Bo Xiong; Ke Zhang; Vafa Bayat; Gabriela David; Tongchao Li; Kuchuan Chen; Upasana Gala; Tamar Harel; Davut Pehlivan; Samantha Penney; Lisenka E.L.M. Vissers; Joep de Ligt; Shalini N. Jhangiani; Yajing Xie; Stephen H. Tsang; Yesim Parman; Merve Sivaci; Esra Battaloglu; Donna M. Muzny; Ying Wooi Wan; Zhandong Liu

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Cell | 2014

Human CLP1 Mutations Alter tRNA Biogenesis, Affecting Both Peripheral and Central Nervous System Function

Ender Karaca; Stefan Weitzer; Davut Pehlivan; Hiroshi Shiraishi; Tasos Gogakos; Toshikatsu Hanada; Shalini N. Jhangiani; Wojciech Wiszniewski; Marjorie Withers; Ian M. Campbell; Serkan Erdin; Sedat Işıkay; Luis M. Franco; Claudia Gonzaga-Jauregui; Tomasz Gambin; Violet Gelowani; Jill V. Hunter; Gozde Yesil; Erkan Koparir; Sarenur Yilmaz; Miguel Brown; Daniel Briskin; Markus Hafner; Pavel Morozov; Thalia A. Farazi; Christian Bernreuther; Markus Glatzel; Siegfried Trattnig; Joachim Friske; Claudia Kronnerwetter

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Cell Reports | 2015

Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy

Claudia Gonzaga-Jauregui; Tamar Harel; Tomasz Gambin; Maria Kousi; Laurie B. Griffin; Ludmila Francescatto; Burcak Ozes; Ender Karaca; Shalini N. Jhangiani; Matthew N. Bainbridge; Kim Lawson; Davut Pehlivan; Yuji Okamoto; Marjorie Withers; Pedro Mancias; Anne Slavotinek; Pamela J. Reitnauer; Meryem Tuba Goksungur; Michael E. Shy; Thomas O. Crawford; Michel Koenig; Jason R. Willer; Brittany N. Flores; Igor Pediaditrakis; Onder Us; Wojciech Wiszniewski; Yesim Parman; Anthony Antonellis; Donna M. Muzny; Nicholas Katsanis

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.


The Journal of Allergy and Clinical Immunology | 2017

Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders

Asbjørg Stray-Pedersen; Hanne Sørmo Sorte; Pubudu Saneth Samarakoon; Tomasz Gambin; Ivan K. Chinn; Zeynep Coban Akdemir; Hans Christian Erichsen; Lisa R. Forbes; Shen Gu; Bo Yuan; Shalini N. Jhangiani; Donna M. Muzny; Olaug K. Rødningen; Ying Sheng; Sarah K. Nicholas; Lenora M. Noroski; Filiz O. Seeborg; Carla M. Davis; Debra L. Canter; Emily M. Mace; Timothy J. Vece; Carl E. Allen; Harshal Abhyankar; Philip M. Boone; Christine R. Beck; Wojciech Wiszniewski; Børre Fevang; Pål Aukrust; Geir E. Tjønnfjord; Tobias Gedde-Dahl

Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective: We sought to investigate the ability of whole‐exome screening methods to detect disease‐causing variants in patients with PIDDs. Methods: Patients with PIDDs from 278 families from 22 countries were investigated by using whole‐exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome‐tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. Results: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD‐causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion: This high‐throughput genomic approach enabled detection of disease‐related variants in unexpected genes; permitted detection of low‐grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.


The Journal of Clinical Endocrinology and Metabolism | 2015

Whole-Exome Sequencing Identifies Homozygous GPR161 Mutation in a Family with Pituitary Stalk Interruption Syndrome

Ender Karaca; Ramazan Buyukkaya; Davut Pehlivan; Wu-Lin Charng; Kürşat Oğuz Yaykaşlı; Yavuz Bayram; Tomasz Gambin; Marjorie Withers; Mehmed M. Atik; İlknur Arslanoğlu; Semih Bolu; Serkan Erdin; Ayla Buyukkaya; Emine Yaykasli; Shalini N. Jhangiani; Donna M. Muzny; Richard A. Gibbs; James R. Lupski

CONTEXT Pituitary stalk interruption syndrome (PSIS) is a rare, congenital anomaly of the pituitary gland characterized by pituitary gland insufficiency, thin or discontinuous pituitary stalk, anterior pituitary hypoplasia, and ectopic positioning of the posterior pituitary gland (neurohypophysis). The clinical presentation of patients with PSIS varies from isolated growth hormone (GH) deficiency to combined pituitary insufficiency and accompanying extrapituitary findings. Mutations in HESX1, LHX4, OTX2, SOX3, and PROKR2 have been associated with PSIS in less than 5% of cases; thus, the underlying genetic etiology for the vast majority of cases remains to be determined. OBJECTIVE We applied whole-exome sequencing (WES) to a consanguineous family with two affected siblings who have pituitary gland insufficiency and radiographic findings of hypoplastic (thin) pituitary gland, empty sella, ectopic neurohypophysis, and interrupted pitiutary stalk-characteristic clinical diagnostic findings of PSIS. DESIGN AND PARTICIPANTS WES was applied to two affected and one unaffected siblings. RESULTS WES of two affected and one unaffected sibling revealed a unique homozygous missense mutation in GPR161, which encodes the orphan G protein-coupled receptor 161, a protein responsible for transducing extracellular signals across the plasma membrane into the cell. CONCLUSION Mutations of GPR161 may be implicated as a potential novel cause of PSIS.


Journal of Clinical Investigation | 2016

Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin

Yavuz Bayram; Ender Karaca; Zeynep Coban Akdemir; Elif Yilmaz; Gulsen Akay Tayfun; Hatip Aydin; Deniz Torun; Sevcan Tug Bozdogan; Alper Gezdirici; Sedat Işıkay; Mehmed M. Atik; Tomasz Gambin; Tamar Harel; Ayman W. El-Hattab; Wu Lin Charng; Davut Pehlivan; Shalini N. Jhangiani; Donna M. Muzny; Ali Karaman; Tamer Celik; Ozge Ozalp Yuregir; Timur Yildirim; Ilhan A. Bayhan; Eric Boerwinkle; Richard A. Gibbs; Nursel Elcioglu; Beyhan Tüysüz; James R. Lupski

BACKGROUND Arthrogryposis, defined as congenital joint contractures in 2 or more body areas, is a clinical sign rather than a specific disease diagnosis. To date, more than 400 different disorders have been described that present with arthrogryposis, and variants of more than 220 genes have been associated with these disorders; however, the underlying molecular etiology remains unknown in the considerable majority of these cases. METHODS We performed whole exome sequencing (WES) of 52 patients with clinical presentation of arthrogryposis from 48 different families. RESULTS Affected individuals from 17 families (35.4%) had variants in known arthrogryposis-associated genes, including homozygous variants of cholinergic γ nicotinic receptor (CHRNG, 6 subjects) and endothelin converting enzyme-like 1 (ECEL1, 4 subjects). Deleterious variants in candidate arthrogryposis-causing genes (fibrillin 3 [FBN3], myosin IXA [MYO9A], and pleckstrin and Sec7 domain containing 3 [PSD3]) were identified in 3 families (6.2%). Moreover, in 8 families with a homozygous mutation in an arthrogryposis-associated gene, we identified a second locus with either a homozygous or compound heterozygous variant in a candidate gene (myosin binding protein C, fast type [MYBPC2] and vacuolar protein sorting 8 [VPS8], 2 families, 4.2%) or in another disease-associated genes (6 families, 12.5%), indicating a potential mutational burden contributing to disease expression. CONCLUSION In 58.3% of families, the arthrogryposis manifestation could be explained by a molecular diagnosis; however, the molecular etiology in subjects from 20 families remained unsolved by WES. Only 5 of these 20 unrelated subjects had a clinical presentation consistent with amyoplasia; a phenotype not thought to be of genetic origin. Our results indicate that increased use of genome-wide technologies will provide opportunities to better understand genetic models for diseases and molecular mechanisms of genetically heterogeneous disorders, such as arthrogryposis. FUNDING This work was supported in part by US National Human Genome Research Institute (NHGRI)/National Heart, Lung, and Blood Institute (NHLBI) grant U54HG006542 to the Baylor-Hopkins Center for Mendelian Genomics, and US National Institute of Neurological Disorders and Stroke (NINDS) grant R01NS058529 to J.R. Lupski.


Fertility and Sterility | 2015

Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia

Ranjith Ramasamy; M. Emre Bakırcıoğlu; Cenk Cengiz; Ender Karaca; Jason M. Scovell; Shalini N. Jhangiani; Zeynep Coban Akdemir; Matthew N. Bainbridge; Yao Yu; Chad D. Huff; Richard A. Gibbs; James R. Lupski; Dolores J. Lamb

OBJECTIVE To investigate the genetic cause of nonobstructive azoospermia (NOA) in a consanguineous Turkish family through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. DESIGN Whole-exome sequencing (WES). SETTING Research laboratory. PATIENT(S) Two siblings in a consanguineous family with NOA. INTERVENTION(S) Validating all variants passing filter criteria with Sanger sequencing to confirm familial segregation and absence in the control population. MAIN OUTCOME MEASURE(S) Discovery of a mutation that could potentially cause NOA. RESULT(S) A novel nonsynonymous mutation in the neuronal PAS-2 domain (NPAS2) was identified in a consanguineous family from Turkey. This mutation in exon 14 (chr2: 101592000 C>G) of NPAS2 is likely a disease-causing mutation as it is predicted to be damaging, it is a novel variant, and it segregates with the disease. Family segregation of the variants showed the presence of the homozygous mutation in the three brothers with NOA and a heterozygous mutation in the mother as well as one brother and one sister who were both fertile. The mutation is not found in the single-nucleotide polymorphism database, the 1000 Genomes Project, the Baylor College of Medicine cohort of 500 Turkish patients (not a population-specific polymorphism), or the matching 50 fertile controls. CONCLUSION(S) With the use of WES we identified a novel homozygous mutation in NPAS2 as a likely disease-causing variant in a Turkish family diagnosed with NOA. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases for which conventional genetic approaches have previously failed to find a molecular diagnosis.


Brain | 2017

PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment

Massimo Zollo; Mustafa Y. Ahmed; Veronica Ferrucci; Vincenzo Salpietro; Fatemeh Asadzadeh; Marianeve Carotenuto; Reza Maroofian; Ahmed Al-Amri; Royana Singh; Iolanda Scognamiglio; Majid Mojarrad; Luca Musella; Angela Duilio; Angela Di Somma; Ender Karaca; Anna Rajab; Aisha Al-Khayat; Tribhuvan Mohan Mohapatra; Atieh Eslahi; Farah Ashrafzadeh; Lettie E. Rawlins; Rajniti Prasad; Rashmi Gupta; Preeti Kumari; Mona Srivastava; Flora Cozzolino; Sunil Kumar Rai; Maria Chiara Monti; Gaurav V. Harlalka; Michael A. Simpson

Zollo et al. report that mutations in PRUNE1, a phosphoesterase superfamily molecule, underlie primary microcephaly and profound global developmental delay in four unrelated families from Oman, India, Iran and Italy. The study highlights a potential role for prune during microtubule polymerization, suggesting that prune syndrome may be a tubulinopathy.


Journal of Human Genetics | 2015

The phenotypic and molecular genetic spectrum of Alström syndrome in 44 Turkish kindreds and a literature review of Alström syndrome in Turkey.

Ayşegül Ozantürk; Jan D. Marshall; Gayle B. Collin; Selma Düzenli; Robert P Marshall; Şükrü Candan; Tülay Tos; İhsan Esen; Mustafa Taskesen; Atilla Cayir; Şükrü Öztürk; İhsan Üstün; Esra Ataman; Emin Karaca; Taha Resid Ozdemir; İlknur Erol; Fehime Kara Eroğlu; Deniz Torun; Erhan Pariltay; Elif Yılmaz-Güleç; Ender Karaca; M Emre Atabek; Nursel Elcioglu; İlhan Satman; Claes Möller; Jean Muller; Juergen K Naggert; Rıza Köksal Özgül

Correction to: Journal of Human Genetics (2015) 60, 1–9; doi:10.1038/jhg.2014.85; published online 9 October 2014 Since the advance online publication of this article, the authors of the above paper have noticed errors in the list of authors and affiliations. Article with correct authors informationnow appears in this issue.


Nucleic Acids Research | 2016

Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort

Tomasz Gambin; Zeynep Coban Akdemir; Bo Yuan; Shen Gu; Theodore Chiang; Claudia M.B. Carvalho; Chad A. Shaw; Shalini N. Jhangiani; Philip M. Boone; Mohammad K. Eldomery; Ender Karaca; Yavuz Bayram; Asbjørg Stray-Pedersen; Donna M. Muzny; Wu Lin Charng; Vahid Bahrambeigi; John W. Belmont; Eric Boerwinkle; Arthur L. Beaudet; Richard A. Gibbs; James R. Lupski

Abstract We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.

Collaboration


Dive into the Ender Karaca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Davut Pehlivan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tomasz Gambin

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yavuz Bayram

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehmed M. Atik

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge