Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Endre Barta is active.

Publication


Featured researches published by Endre Barta.


Immunity | 2010

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Attila Szanto; Balint L. Balint; Zsuzsanna S. Nagy; Endre Barta; Balazs Dezso; Attila Pap; Lajos Széles; Szilard Poliska; Melinda Oros; Ronald M. Evans; Yaacov Barak; John W. R. Schwabe; Laszlo Nagy

Summary Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells.


Journal of Biological Chemistry | 2006

Peroxisome Proliferator-activated Receptor γ-regulated ABCG2 Expression Confers Cytoprotection to Human Dendritic Cells

Istvan Szatmari; György Vámosi; Peter Brazda; Balint L. Balint; Szilvia Benko; Lajos Széles; Viktória Jeney; Csilla Özvegy-Laczka; Attila Szanto; Endre Barta; József Balla; Balázs Sarkadi; Laszlo Nagy

ABCG2, a member of the ATP-binding cassette transporters has been identified as a protective pump against endogenous and exogenous toxic agents. ABCG2 was shown to be expressed at high levels in stem cells and variably regulated during cell differentiation. Here we demonstrate that functional ABCG2 is expressed in human monocyte-derived dendritic cells by the activation of a nuclear hormone receptor, PPARγ. We identified and characterized a 150-base pair long conserved enhancer region, containing three functional PPAR response elements (PPARE), upstream of the human ABCG2 gene. We confirmed the binding of the PPARγ·RXR heterodimer to this enhancer region, suggesting that PPARγ directly regulates the transcription of ABCG2. Consistent with these results, elevated expression of ABCG2 mRNA was coupled to enhanced protein production, resulting in increased xenobiotic extrusion capacity via ABCG2 in PPARγ-activated cells. Furthermore PPARγ instructed dendritic cells showed increased Hoechst dye extrusion and resistance to mitoxantrone. Collectively, these results uncovered a mechanism by which up-regulation of functional ABCG2 expression can be achieved via exogenous or endogenous activation of the lipid-activated transcription factor, PPARγ. The increased expression of the promiscuous ABCG2 transporter can significantly modify the xenobiotic and drug resistance of human myeloid dendritic cells.


The EMBO Journal | 2008

Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay

Zoltán Kerényi; Zsuzsanna Mérai; László Hiripi; Anna Hangyáné Benkovics; Péter Gyula; Christophe Lacomme; Endre Barta; Ferenc Nagy; Dániel Silhavy

Nonsense‐mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants. Using an approach that allows rapid identification of plant NMD trans factors, we demonstrated that two plant NMD pathways coexist, one eliminates mRNAs with long 3′UTRs, whereas a distinct pathway degrades mRNAs harbouring 3′UTR‐located introns. We showed that UPF1, UPF2 and SMG‐7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron‐based NMD. The molecular mechanism of long 3′UTR‐based plant NMD resembled yeast NMD, whereas the intron‐based NMD was similar to mammalian NMD, suggesting that both pathways are evolutionarily conserved. Interestingly, the SMG‐7 NMD component is targeted by NMD, suggesting that plant NMD is autoregulated. We propose that a complex, autoregulated NMD mechanism operated in stem eukaryotes, and that despite aspect of the mechanism being simplified in different lineages, feedback regulation was retained in all kingdoms.


Journal of Virology | 2005

Aureusvirus P14 Is an Efficient RNA Silencing Suppressor That Binds Double-Stranded RNAs without Size Specificity

Zsuzsanna Mérai; Zoltán Kerényi; Attila Molnar; Endre Barta; Anna Válóczi; György Dénes Bisztray; Zoltán Havelda; József Burgyán; Dániel Silhavy

ABSTRACT RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood. Tombusvirus open reading frame (ORF) 5-encoded P19 is a size-selective double-stranded RNA (dsRNA) binding protein that suppresses silencing by sequestering double-stranded small interfering RNAs (siRNAs), the specificity determinant of the antiviral silencing system. To better understand the evolution of silencing suppression, we characterized the suppressor of the type member of Aureusviruses, the closest relatives of the genus Tombusvirus. We show that the Pothos latent virus (PoLV) ORF 5-encoded P14 is an efficient suppressor of both virus- and transgene-induced silencing. Findings that in vitro P14 binds dsRNAs and double-stranded siRNAs without obvious size selection suggest that P14, unlike P19, can suppress silencing by sequestering both long dsRNA and double-stranded siRNA components of the silencing machinery. Indeed, P14 prevents the accumulation of hairpin transcript-derived siRNAs, indicating that P14 inhibits inverted repeat-induced silencing by binding the long dsRNA precursors of siRNAs. However, viral siRNAs accumulate to high levels in PoLV-infected plants; therefore, P14 might inhibit virus-induced silencing by sequestering double-stranded siRNAs. Finally, sequence analyses suggest that P14 and P19 suppressors diverged from an ancient dsRNA binding suppressor that evolved as a nested protein within the common ancestor of aureusvirus-tombusvirus movement proteins.


Plant Molecular Biology | 1995

Isolation and characterization of a water-stress-inducible cDNA clone from Solanum chacoense

Dániel Silhavy; Gyorgy Hutvagner; Endre Barta; Zsófia Bánfalvi

A rich source of valuable genes are wild species. Solanum chacoense Bitter with its extreme resistance to viruses, insects and drought, is a good example.In the present study, a stress gene, designated DS2, has been isolated from S. chacoense. We have shown that the expression of the gene is organ-specific being detected in leaf, stem and stolon, but not in root, tuber or flower. Treatment of detached leaves with abscisic acid (ABA), salicylic acid or methyl jasmonate resulted in only very moderate accumulation of DS2 mRNA. Thus, DS2 represents a very rare type of the water-stress-inducible genes whose signalling pathway is not primarily related to ABA.Based on DNA sequence analysis, DS2 encodes a putative protein starting with 20 amino acids homologous to the ABA- and water-stress-inducible, ripening-related (ASR) proteins of tomato continued by an insert of 155 amino acids structurally similar to certain LEAs (late embryogenesis-abundant proteins) and ending in 88 amino acids homologous again to the ASR sequences and to an unpublished partial cDNA fragment isolated from the root of rice. The N-terminal region of the DS2 protein is hydrophilic with ten 13-mer amino acid motifs and random coil structure. In contrast, the C-terminus predicts an α-helix and possesses a bipartite nuclear targeting sequence motif. These data suggest that the function of the DS2 may be the protection of the nuclear DNA from desiccation.


Genes & Development | 2014

The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages

Bence Daniel; Gergely Nagy; Nasun Hah; Attila Horvath; Zsolt Czimmerer; Szilard Poliska; Tibor Gyuris; Jiri Keirsse; Conny Gysemans; Jo A. Van Ginderachter; Balint L. Balint; Ronald M. Evans; Endre Barta; Laszlo Nagy

RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.


Nucleic Acids Research | 2013

Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex

Tünde Nyikó; Farkas Kerényi; Levente Szabadkai; Anna Hangyáné Benkovics; Péter Major; Boglárka Sonkoly; Zsuzsanna Mérai; Endre Barta; Emilia Niemiec; Joanna Kufel; Dániel Silhavy

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3′untranslated region (UTR). In yeasts, unusually long 3′UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3′UTR-bound EJCs trigger NMD. It is proposed that this intron-based NMD is vertebrate specific, and it evolved to eliminate the misproducts of alternative splicing. Here, we provide evidence that similar EJC-mediated intron-based NMD functions in plants, suggesting that this type of NMD is evolutionary conserved. We demonstrate that in plants, like in vertebrates, introns located >50 nt from the stop induces NMD. We show that orthologs of all core EJC components are essential for intron-based plant NMD and that plant Partner of Y14 and mago (PYM) also acts as EJC disassembly factor. Moreover, we found that complex autoregulatory circuits control the activity of plant NMD. We demonstrate that expression of suppressor with morphogenic effect on genitalia (SMG)7, which is essential for long 3′UTR- and intron-based NMD, is regulated by both types of NMD, whereas expression of Barentsz EJC component is downregulated by intron-based NMD.


Nucleic Acids Research | 2004

DoOp: Databases of orthologous promoters, collections of clusters of orthologous upstream sequences from chordates and plants

Endre Barta; Endre Sebestyén; Tamás Pálfy; Gabor Zsolt Toth; Csaba Ortutay; László Patthy

DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21 061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically.


Trends in Genetics | 2002

Repeats with variations: Accelerated evolution of the Pin2 family of proteinase inhibitors

Endre Barta; Alessandro Pintar; Sándor Pongor

The Pin2 genes encode potato type II proteinase inhibitors that act against pathogenic attack. The first examples were found only in the Solanaceae family, but, using new EST and genomic data, we have found 11 homologous genes dispersed through almost the whole range of mono- and di-cotyledonous plants. In contrast to the repetitive precursor sequences of the Solanaceae Pin2 genes, the new homologs have only a single repeat unit. The gene family appears to have evolved from a single-domain ancestral gene through a series of gene-duplication and domain-duplication steps. A number of unequal cross-over and gene conversion events could explain the current gene and domain pattern of the Solanaceae Pin2 subfamily.


Protein Science | 2008

Proteins of circularly permuted sequence present within the same organism: The major serine proteinase inhibitor from Capsicum annuum seeds

Nikolinka Antcheva; Alessandro Pintar; Andrá S. Patthy; András Simoncsits; Endre Barta; Bojidar Tchorbanov; Sándor Pongor

The major serine proteinase inhibitor from bell pepper (Capsicum annuum, paprika) seeds was isolated, characterized, and sequenced, and its disulfide bond topology was determined. PSI‐1.2 is a 52‐amino‐acid‐long, cysteine‐rich polypeptide that inhibits both trypsin (Ki = 4.6 × 10−9 M) and chymotrypsin (Ki = 1.1 × 10−8 M) and is a circularly permuted member of the potato type II inhibitor family. Mature proteins of this family are produced from precursor proteins containing two to eight repeat units that are proteolytically cleaved within, rather than between, the repeats. In contrast, PSI‐1.2 corresponds to a complete repeat that was predicted as the putative ancestral protein of the potato type II family. To our knowledge, this is the first case in which two proteins related to each other by circular permutation are shown to exist in the same organism and are expressed within the same organ. PSI‐1.2 is not derived from any of the known precursors, and it contains a unique amphiphilic segment in one of its loops. A systematic comparison of the related precursor repeat‐sequences reveals common evolutionary patterns that are in agreement with the ancestral gene‐duplication hypothesis.

Collaboration


Dive into the Endre Barta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sándor Pongor

Pázmány Péter Catholic University

View shared research outputs
Top Co-Authors

Avatar

Dániel Silhavy

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ibolya Kiss

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktor Stéger

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

János Nagy

University of Kaposvár

View shared research outputs
Top Co-Authors

Avatar

László Orosz

Eötvös Loránd University

View shared research outputs
Researchain Logo
Decentralizing Knowledge