Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eng Eong Ooi is active.

Publication


Featured researches published by Eng Eong Ooi.


Journal of Medical Microbiology | 2008

Burkholderia pseudomallei aerosol infection results in differential inflammatory responses in BALB/c and C57Bl/6 mice

Gek-Yen Gladys Tan; Yichun Liu; Suppiah Paramalingal Sivalingam; Siew-Hoon Sim; Dongling Wang; Jean-Charles Paucod; Yves Gauthier; Eng Eong Ooi

Melioidosis is caused by the Gram-negative bacterium Burkholderia pseudomallei, whose portals of entry into the body include subcutaneous, ingestion and inhalation routes. Animal models play an important role in furthering our understanding of this disease, which is associated with high morbidity and mortality in susceptible subjects. Previous studies using intranasal inoculation showed a differential susceptibility to inhalational melioidosis in BALB/c and C57Bl/6 mice and attributed the difference to genetic factors and host response. However, a recent study found no difference in susceptibility when the two species of mice were exposed to nebulized bacteria. We sought to address this discrepancy by using a nasal route only, instead of whole-body aerosol exposure system. Employing three different clinical strains of B. pseudomallei and following the progression of disease development in both BALB/c and C57Bl/6 mice, we found that BALB/c mice were at least 10- to 100-fold more susceptible to infection than C57Bl/6 mice. Comparison of bacterial burdens in aerosol-challenged mice, at both the pulmonary and distant sites of infection, suggests that C57Bl/6 mice were more efficient in clearing the bacteria than BALB/c mice. In addition, a comprehensive study of a wide panel of chemokines and cytokines at the protein level demonstrated that hyperproduction of proinflammatory cytokines in aerosol-challenged BALB/c mice did not translate into better protection and survival of these mice, whereas a moderate increase in these proteins in aerosol-challenged C57Bl/6 mice was more beneficial in clearing the infection. This suggests that high levels of proinflammatory cytokines are detrimental and contribute to the immunopathogenesis of the infection.


Emerging Infectious Diseases | 2006

Dengue Prevention and 35 Years of Vector Control in Singapore

Eng Eong Ooi; Kee Tai Goh; Duane J. Gubler

A vector control program must be based on epidemiologic and entomologic data.


PLOS ONE | 2009

IL-1β, IL-6, and RANTES as Biomarkers of Chikungunya Severity

Lisa F. P. Ng; Angela Chow; Yong-Jiang Sun; Dyan J. C. Kwek; Poh-Lian Lim; Frederico Dimatatac; Lee Ching Ng; Eng Eong Ooi; Khar-Heng Choo; Zhisheng Her; Philippe Kourilsky; Yee Sin Leo

Background Little is known about the immunopathogenesis of Chikungunya virus. Circulating levels of immune mediators and growth factors were analyzed from patients infected during the first Singaporean Chikungunya fever outbreak in early 2008 to establish biomarkers associated with infection and/or disease severity. Methods and Findings Adult patients with laboratory-confirmed Chikungunya fever infection, who were referred to the Communicable Disease Centre/Tan Tock Seng Hospital during the period from January to February 2008, were included in this retrospective study. Plasma fractions were analyzed using a multiplex-microbead immunoassay. Among the patients, the most common clinical features were fever (100%), arthralgia (90%), rash (50%) and conjunctivitis (40%). Profiles of 30 cytokines, chemokines, and growth factors were able to discriminate the clinical forms of Chikungunya from healthy controls, with patients classified as non-severe and severe disease. Levels of 8 plasma cytokines and 4 growth factors were significantly elevated. Statistical analysis showed that an increase in IL-1β, IL-6 and a decrease in RANTES were associated with disease severity. Conclusions This is the first comprehensive report on the production of cytokines, chemokines, and growth factors during acute Chikungunya virus infection. Using these biomarkers, we were able to distinguish between mild disease and more severe forms of Chikungunya fever, thus enabling the identification of patients with poor prognosis and monitoring of the disease.


PLOS Neglected Tropical Diseases | 2013

Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study

John A. Crump; Anne B. Morrissey; William L. Nicholson; Robert F. Massung; Robyn A. Stoddard; Renee L. Galloway; Eng Eong Ooi; Venance P. Maro; Wilbrod Saganda; Grace D. Kinabo; Charles Muiruri; John A. Bartlett

Introduction The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. Methods and Findings We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Conclusions Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts.


Science Translational Medicine | 2012

The Structural Basis for Serotype-Specific Neutralization of Dengue Virus by a Human Antibody

Ee Ping Teoh; Petra Kukkaro; En Wei Teo; Angeline P. C. Lim; Tze Tong Tan; Andy Yip; Wouter Schul; Myint Aung; Victor A. Kostyuchenko; Yee Sin Leo; Soh Ha Chan; Kenneth G. C. Smith; Annie Hoi Yi Chan; Gang Zou; Eng Eong Ooi; D. Michael Kemeny; Grace K. Tan; Jowin K. W. Ng; Mah Lee Ng; Sylvie Alonso; Dale Fisher; Pei Yong Shi; Brendon J. Hanson; Shee-Mei Lok; Paul A. MacAry

The mechanism of action of a serotype-specific natural human antibody against dengue virus has been identified. Defeating Dengue Dengue virus is a major mosquito-borne viral pathogen that is transmitted through the bite of an infected mosquito. Infection can be asymptomatic, cause a self-limiting fever, or result in potentially fatal hemorrhage. There are no approved vaccines or antiviral therapies for dengue, and current treatment is restricted to fluid replacement. Thus, there is an urgent need for new treatment options for this disease. Dengue virus consists of four related but distinct serotypes, and infection is thought to elicit lifelong immunity to the infecting serotype in patients who recover but only short-term immunity against the other serotypes. Immunity is mediated by serotype-specific antibodies, but little is known about their specificity or mode of action. Now, Teoh et al. characterize a neutralizing human monoclonal antibody induced by natural dengue infection. This antibody is specific for dengue virus serotype 1 and shows little or no binding or neutralizing activity for serotypes 2, 3, and 4. The authors demonstrate that the antibody binds across two adjacent viral envelope proteins and identify the amino acids that comprise the binding site. The antiviral activity of this antibody is linked principally to a blockade of virus binding to target host cells. Treatment with this antibody results in increased survival in a mouse model of dengue virus infection. This human antibody represents a new therapeutic candidate for treating dengue serotype 1 infection. These findings also provide a structural and molecular context for understanding the nature of durable, serotype-specific immunity to dengue infection and thus have implications for the design and evaluation of vaccines against dengue. Dengue virus (DENV) is a mosquito-borne flavivirus that affects 2.5 billion people worldwide. There are four dengue serotypes (DENV1 to DENV4), and infection with one elicits lifelong immunity to that serotype but offers only transient protection against the other serotypes. Identification of the protective determinants of the human antibody response to DENV is a vital requirement for the design and evaluation of future preventative therapies and treatments. Here, we describe the isolation of a neutralizing antibody from a DENV1-infected patient. The human antibody 14c10 (HM14c10) binds specifically to DENV1. HM14c10 neutralizes the virus principally by blocking virus attachment; at higher concentrations, a post-attachment step can also be inhibited. In vivo studies show that the HM14c10 antibody has antiviral activity at picomolar concentrations. A 7 Å resolution cryoelectron microscopy map of Fab fragments of HM14c10 in a complex with DENV1 shows targeting of a discontinuous epitope that spans the adjacent surface of envelope protein dimers. As found previously, a human antibody specific for the related West Nile virus binds to a similar quaternary structure, suggesting that this could be an immunodominant epitope. These findings provide a structural and molecular context for durable, serotype-specific immunity to DENV infection.


Respiratory Research | 2006

Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice

Brendon J. Hanson; Adrianus C. M. Boon; Angeline Pc Lim; Ashley Webb; Eng Eong Ooi; Richard J. Webby

BackgroundHighly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic.MethodsNeutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival.ResultsTwo mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required.ConclusionProphylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza.


Current Infectious Disease Reports | 2010

Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development

Annelies Wilder-Smith; Eng Eong Ooi; Subhash G. Vasudevan; Duane J. Gubler

Dengue virus is the most widespread geographically of the arboviruses and a major public health threat in the tropics and subtropics. Scientific advances in recent years have provided new insights about the pathogenesis of more severe disease and novel approaches into the development of antiviral compounds and dengue vaccines. Phylogenetic studies show an association between specific subtypes (within serotypes) and severity of dengue. The lack of association between maternal antibodies and development of severe dengue in infants in a recent study has called for the rethinking or refinement of the current antibody-dependent enhancement theory of dengue hemorrhagic syndrome in infancy. Such studies should stimulate new directions of research into mechanisms responsible for the development of severe dengue. The life cycle of dengue virus readily shows that virus entry and replication can be targeted by small molecules. Advances in a mouse model (AG 129 mice) have made it easier to test such antiviral compounds. The efforts to find specific dengue inhibitors are intensifying and the tools to evaluate the efficacy of new drugs are now in place for rapid translation into trials in humans. Furthermore, several dengue vaccine candidates are in development, of which the chimeric dengue/yellow fever vaccine has now entered phase 3 trials. Until the availability of a licensed vaccine, disease surveillance and vector population control remain the mainstay of dengue prevention.


Journal of Clinical Microbiology | 2007

Cost-Effective Real-Time Reverse Transcriptase PCR (RT-PCR) To Screen for Dengue Virus followed by Rapid Single-Tube Multiplex RT-PCR for Serotyping of the Virus

Yee-Ling Lai; Youne-Kow Chung; Hwee-Cheng Tan; Hoon-Fang Yap; Grace Yap; Eng Eong Ooi; Lee Ching Ng

ABSTRACT Virus detection methodology provides detection of dengue virus in the early phase of the disease. PCR, targeting cDNA derived from viral RNA, has been used as a laboratory-based molecular tool for the detection of Dengue virus. We report the development and use of three real-time one-step reverse transcriptase PCR (RT-PCR) assays to detect dengue cases and serotype the virus involved. The first RT-PCR assay uses SYBR green I as the reporting dye for the purpose of cost-effective screening for dengue virus. The detection limit of the SYBR green I assay was 10 PFU/ml (0.01 equivalent PFU per assay) for all four dengue virus serotypes. The second RT-PCR assay is a duplex fluorogenic probe-based real-time RT-PCR for serotyping clinical samples for dengue viruses. The detection threshold of the probe-based RT-PCR format was 0.1 PFU for serotypes Dengue-1 and Dengue-2, 1 PFU for serotype Dengue-3, and 0.01 PFU for serotype Dengue-4. The third is a fourplex assay that detects any of the four serotypes in a single closed tube with comparable sensitivity. Validation of the assays with local clinical samples collected from 2004 to 2006 revealed that there was an 88% positive correlation between virus isolation and RT-PCR with regard to dengue virus detection and a 100% correlation with seroconversion in subsequent samples. The serotyping results derived from duplex and fourplex assays agree fully with each other and with that derived from immunofluorescence assays.


PLOS Neglected Tropical Diseases | 2008

Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness

Lukas Tanner; Mark Schreiber; Jenny Guek Hong Low; Adrian Ong; Thomas Tolfvenstam; Yee-Ling Lai; Lee Ching Ng; Yee Sin Leo; Le Thi Puong; Subhash G. Vasudevan; Cameron P. Simmons; Martin L. Hibberd; Eng Eong Ooi

Background Dengue is re-emerging throughout the tropical world, causing frequent recurrent epidemics. The initial clinical manifestation of dengue often is confused with other febrile states confounding both clinical management and disease surveillance. Evidence-based triage strategies that identify individuals likely to be in the early stages of dengue illness can direct patient stratification for clinical investigations, management, and virological surveillance. Here we report the identification of algorithms that differentiate dengue from other febrile illnesses in the primary care setting and predict severe disease in adults. Methods and Findings A total of 1,200 patients presenting in the first 72 hours of acute febrile illness were recruited and followed up for up to a 4-week period prospectively; 1,012 of these were recruited from Singapore and 188 from Vietnam. Of these, 364 were dengue RT-PCR positive; 173 had dengue fever, 171 had dengue hemorrhagic fever, and 20 had dengue shock syndrome as final diagnosis. Using a C4.5 decision tree classifier for analysis of all clinical, haematological, and virological data, we obtained a diagnostic algorithm that differentiates dengue from non-dengue febrile illness with an accuracy of 84.7%. The algorithm can be used differently in different disease prevalence to yield clinically useful positive and negative predictive values. Furthermore, an algorithm using platelet count, crossover threshold value of a real-time RT-PCR for dengue viral RNA, and presence of pre-existing anti-dengue IgG antibodies in sequential order identified cases with sensitivity and specificity of 78.2% and 80.2%, respectively, that eventually developed thrombocytopenia of 50,000 platelet/mm3 or less, a level previously shown to be associated with haemorrhage and shock in adults with dengue fever. Conclusion This study shows a proof-of-concept that decision algorithms using simple clinical and haematological parameters can predict diagnosis and prognosis of dengue disease, a finding that could prove useful in disease management and surveillance.


Cadernos De Saude Publica | 2009

Dengue in Southeast Asia: epidemiological characteristics and strategic challenges in disease prevention

Eng Eong Ooi; Duane J. Gubler

Dengue emerged as a public health burden in Southeast Asia during and following the Second World War and has become increasingly important, with progressively longer and more frequent cyclical epidemics of dengue fever/dengue hemorrhagic fever. Despite this trend, surveillance for this vector-borne viral disease remains largely passive in most Southeast Asian countries, without adequate laboratory support. We review here the factors that may have contributed to the changing epidemiology of dengue in Southeast Asia as well as challenges of disease prevention. We also discuss a regional approach to active dengue virus surveillance, focusing on urban areas where the viruses are maintained, which may be a solution to limited financial resources since most of the countries in the region have developing economies. A regional approach would also result in a greater likelihood of success in disease prevention since the large volume of human travel is a major factor contributing to the geographical spread of dengue viruses.

Collaboration


Dive into the Eng Eong Ooi's collaboration.

Top Co-Authors

Avatar

Subhash G. Vasudevan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Duane J. Gubler

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Hwee Cheng Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuan Rong Chan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yee Sin Leo

Tan Tock Seng Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

October M. Sessions

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Summer L. Zhang

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge