Eng Kuan Moo
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eng Kuan Moo.
Biomechanics and Modeling in Mechanobiology | 2012
Eng Kuan Moo; Walter Herzog; Sang-Kuy Han; N. A. Abu Osman; Belinda Pingguan-Murphy; Salvatore Federico
Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
Frontiers in Physiology | 2016
Eng Kuan Moo; Rafael Fortuna; Scott C. Sibole; Ziad Abusara; Walter Herzog
Sarcomere lengths have been a crucial outcome measure for understanding and explaining basic muscle properties and muscle function. Sarcomere lengths for a given muscle are typically measured at a single spot, often in the mid-belly of the muscle, and at a given muscle length. It is then assumed implicitly that the sarcomere length measured at this single spot represents the sarcomere lengths at other locations within the muscle, and force-length, force-velocity, and power-velocity properties of muscles are often implied based on these single sarcomere length measurements. Although, intuitively appealing, this assumption is yet to be supported by systematic evidence. The objective of this study was to measure sarcomere lengths at defined locations along and across an intact muscle, at different muscle lengths. Using second harmonic generation (SHG) imaging technique, sarcomere patterns in passive mouse tibialis anterior (TA) were imaged in a non-contact manner at five selected locations (“proximal,” “distal,” “middle,” “medial,” and “lateral” TA sites) and at three different lengths encompassing the anatomical range of motion of the TA. We showed that sarcomere lengths varied substantially within small regions of the muscle and also for different sites across the entire TA. Also, sarcomere elongations with muscle lengthening were non-uniform across the muscle, with the highest sarcomere stretches occurring near the myotendinous junction. We conclude that muscle mechanics derived from sarcomere length measured from a small region of a muscle may not well-represent the sarcomere length and associated functional properties of the entire muscle.
Journal of Biomechanics | 2014
Eng Kuan Moo; Sang Kuy Han; Salvatore Federico; Scott C. Sibole; Azim Jinha; Noor Azuan Abu Osman; Belinda Pingguan-Murphy; Walter Herzog
Cartilage lesions change the microenvironment of cells and may accelerate cartilage degradation through catabolic responses from chondrocytes. In this study, we investigated the effects of structural integrity of the extracellular matrix (ECM) on chondrocytes by comparing the mechanics of cells surrounded by an intact ECM with cells close to a cartilage lesion using experimental and numerical methods. Experimentally, 15% nominal compression was applied to bovine cartilage tissues using a light-transmissible compression system. Target cells in the intact ECM and near lesions were imaged by dual-photon microscopy. Changes in cell morphology (N(cell)=32 for both ECM conditions) were quantified. A two-scale (tissue level and cell level) Finite Element (FE) model was also developed. A 15% nominal compression was applied to a non-linear, biphasic tissue model with the corresponding cell level models studied at different radial locations from the centre of the sample in the transient phase and at steady state. We studied the Green-Lagrange strains in the tissue and cells. Experimental and theoretical results indicated that cells near lesions deform less axially than chondrocytes in the intact ECM at steady state. However, cells near lesions experienced large tensile strains in the principal height direction, which are likely associated with non-uniform tissue radial bulging. Previous experiments showed that tensile strains of high magnitude cause an up-regulation of digestive enzyme gene expressions. Therefore, we propose that cartilage degradation near tissue lesions may be due to the large tensile strains in the principal height direction applied to cells, thus leading to an up-regulation of catabolic factors.
Clinics | 2011
Eng Kuan Moo; N. A. Abu Osman; Belinda Pingguan-Murphy
INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.
Biophysical Journal | 2013
Eng Kuan Moo; Matthias Amrein; Marcelo Epstein; Mike Duvall; Noor Azuan Abu Osman; Belinda Pingguan-Murphy; Walter Herzog
Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
PLOS ONE | 2017
Eng Kuan Moo; Daniel R. Peterson; T.R. Leonard; Motoshi Kaya; Walter Herzog
Frogs’ outstanding jumping ability has been associated with a high power output from the leg extensor muscles. Two main theories have emerged to explain the high power output of the frog leg extensor muscles, either (i) the contractile conditions of all leg extensor muscles are optimized in terms of muscle length and speed of shortening, or (ii) maximal power is achieved through a dynamic catch mechanism that uncouples fibre shortening from the corresponding muscle-tendon unit shortening. As in vivo instantaneous power generation in frog hind limb muscles during jumping has never been measured directly, it is hard to distinguish between the two theories. In this study, we determined the instantaneous variable power output of the plantaris longus (PL) of Lithobates pipiens (also known as Rana pipiens), by directly measuring the in vivo force, length change, and speed of muscle and fibre shortening in near maximal jumps. Fifteen near maximal jumps (> 50cm in horizontal distance) were analyzed. High instantaneous peak power in PL (536 ± 47 W/kg) was achieved by optimizing the contractile conditions in terms of the force-length but not the force-velocity relationship, and by a dynamic catch mechanism that decouples fascicle shortening from muscle-tendon unit shortening. We also found that the extra-muscular free tendon likely amplifies the peak power output of the PL by modulating fascicle shortening length and shortening velocity for optimum power output, but not by releasing stored energy through recoiling as the tendon only started recoiling after peak PL power had been achieved.
Journal of Orthopaedic Research | 2017
Eng Kuan Moo; Walter Herzog
Impact loading results in chondrocyte death. Previous studies implicated high tensile strain rates in chondrocyte membranes as the cause of impact‐induced cell deaths. However, this hypothesis relies on the untested assumption that chondrocyte membranes unfold in vivo during physiological tissue compression, but do not unfold during impact loading. Although membrane unfolding has been observed in isolated chondrocytes during osmotically induced swelling and mechanical compression, it is not known if membrane unfolding also occurs in chondrocytes embedded in their natural extracellular matrix. This study was aimed at quantifying changes in membrane morphology of in situ superficial zone chondrocytes during slow physiological cartilage compression. Bovine cartilage‐bone explants were loaded at 5 μm/s to nominal compressive strains ranging from 0% to 50%. After holding the final strains for 45 min, the loaded cartilage was chemically pre‐fixed for 12 h. The cartilage layer was post‐processed for visualization of cell ultrastructure using electron microscopy. The changes in membrane morphology in superficial zone cells were quantified from planar electron micrographs by measuring the roughness and the complexity of the cell surfaces. Qualitatively, the cell surface ruffles that existed before loading disappeared when cartilage was loaded. Quantitatively, the roughness and complexity of cell surfaces decreased with increasing load magnitudes, suggesting a load‐dependent use of membrane reservoirs. Chondrocyte membranes unfold in a load‐dependent manner when cartilage is compressed. Under physiologically meaningful loading conditions, the cells likely expand their surface through unfolding of the membrane ruffles, and therefore avoid direct stretch of the cell membrane.
Frontiers in Physiology | 2017
Eng Kuan Moo; T.R. Leonard; Walter Herzog
The sarcomere force-length relationship has been extensively used to predict muscle force potential. The common practice is to measure the mean sarcomere length (SL) in a relaxed muscle at a single location and at a given length, and this mean SL is assumed to represent the SLs at other locations across the muscle. However, in a previous study, we found that SLs are highly non-uniform across an intact passive muscle. Moreover, SL non-uniformity increases during activation in single myofibril experiments. Myofibrils lack some structural proteins that comprise an intact muscle, and therefore, the increased SL dispersion upon activation seen in myofibrils may not occur in intact whole muscle. The objectives of the current study were (i) to measure the distribution of SLs in an activated intact muscle; and (ii) to assess the feasibility of using the mean SL measured at a specific location of the muscle to predict muscle force. Using state-of-the-art multi-photon microscopy and a miniature tendon force transducer, in vivo sarcomeres in the mouse tibialis anterior were imaged simultaneously with muscle force during isometric tetanic contractions. We found that in vivo SL dispersion increased substantially during activation and reached average differences of ~1.0 μm. These differences in SL are associated with theoretical force differences of 70–100% of the maximal isometric force. Furthermore, SLs measured at a single location in the passive muscle were poor predictors of active force potential. Although mean SLs in the activated muscle were better predictors of force potential, predicted forces still differed by as much as 35% from the experimentally measured maximal isometric forces.
The Journal of Experimental Biology | 2017
Krysta Powers; Venus Joumaa; Azim Jinha; Eng Kuan Moo; Ian C. Smith; Kiisa C. Nishikawa; Walter Herzog
ABSTRACT In actively stretched skeletal muscle sarcomeres, titin-based force is enhanced, increasing the stiffness of active sarcomeres. Titin force enhancement in sarcomeres is vastly reduced in mdm, a genetic mutation with a deletion in titin. Whether loss of titin force enhancement is associated with compensatory mechanisms at higher structural levels of organization, such as single fibres or entire muscles, is unclear. The aim of this study was to determine whether mechanical deficiencies in titin force enhancement are also observed at the fibre level, and whether mechanisms compensate for the loss of titin force enhancement. Single skinned fibres from control and mutant mice were stretched actively and passively beyond filament overlap to observe titin-based force. Mutant fibres generated lower contractile stress (force divided by cross-sectional area) than control fibres. Titin force enhancement was observed in control fibres stretched beyond filament overlap, but was overshadowed in mutant fibres by an abundance of collagen and high variability in mechanics. However, titin force enhancement could be measured in all control fibres and most mutant fibres following short stretches, accounting for ∼25% of the total stress following active stretch. Our results show that the partial loss of titin force enhancement in myofibrils is not preserved in all mutant fibres and this mutation likely affects fibres differentially within a muscle. An increase in collagen helps to reestablish total force at long sarcomere lengths with the loss in titin force enhancement in some mutant fibres, increasing the overall strength of mutant fibres. Summary: Titin force is differentially enhanced in skinned skeletal muscle fibres from control and titin-mutant mice.
Clinical Biomechanics | 2015
Douglas A. Bourne; Eng Kuan Moo; Walter Herzog
BACKGROUND Impact loading causes cartilage damage and cell death. Pre-loading prior to impact loading may protect cartilage and chondrocytes. However, there is no systematic evidence and understanding of the effects of pre-load strategies on cartilage damage and chondrocyte death. This study aimed at determining the effects of the pre-load history on impact-induced chondrocyte death in an intact joint. METHODS Patellofemoral joints from 42 rabbits were loaded by controlled quadriceps muscle contractions and an external impacter. Two extreme muscular loading conditions were used: (i) a short-duration, high intensity, static muscle contraction, and (ii) a long-duration, low-intensity, cyclic muscle loading protocol. A 5-Joule centrally-oriented, gravity-accelerated impact load was applied to the joints. Chondrocyte viability was quantified following the muscular loading protocols, following application of the isolated impact loads, and following application of the impact loads that were preceded by the muscular pre-loads. Joint contact pressures were measured for all loading conditions by a pressure-sensitive film. FINDINGS Comparing to cartilage injured by impact loading alone, cartilage pre-loaded by static, maximal intensity, short-term muscle loads had lower cell death, while cartilage pre-loaded by repetitive, low-intensity, long-term muscular loads has higher cell death. The locations of peak joint contact pressures were not strongly correlated with the locations of greatest cell death occurrence. INTERPRETATION Static, high intensity, short muscular pre-load protected cells from impact injury, whereas repetitive, low intensity, prolonged muscular pre-loading to the point of muscular fatigue left the chondrocytes vulnerable to injury. However, cell death seems to be unrelated to the peak joint pressures.