Engang Wang
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Engang Wang.
Journal of Applied Physics | 2013
Lei Qu; Engang Wang; Ke Han; Xiaowei Zuo; Lin Zhang; Peng Jia; Jicheng He
Cu-15 vol. % Fe composites produced by cold deformation were annealed at various temperatures for 1 h. The electrical resistivity, tensile strength, and microstructure were investigated by four-probe technique, electronic universal testing machine, and scanning electron microscopy (SEM), respectively. The Fe solubility in Cu-matrix was estimated from the saturation magnetization of the composites. The results reveal that the resistivity of impurity scattering ρimp is the main contributor to the resistivity of the Cu-Fe composites if the phonon and dislocation scattering contributions to the electrical resistivity are considered to be constants. At annealing temperatures below 500 °C, an increase of filament spacing and reduction of interface area in unit volume result in a marginal decrease of the resistivity with temperatures. Above 500 °C, the Fe solubility in Cu-matrix rapidly increases with temperature, which directly causes the increase of composites resistivity.
Journal of Iron and Steel Research International | 2017
Yu Xu; Engang Wang; Zhuang Li; An-yuan Deng
The grain refinement and macrosegregation control of GCr15 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EMS can create an upward electromagnetic force and generate longitudinal loop convection, which enables the better mixing of the upper part with the lower part of the liquid steel. The results showed that applying V-EMS can enlarge the region of the equiaxed grain, decrease the secondary dendrite arm spacing (SDAS) and reduce the segregation of both carbon and sulfur. After applying V-EMS, liquid steel with a high solute concentration is brought to the dendrite tips, making the dendrite arms partially melt. The length of the dendrite fragment is approximately 1.8 mm, 10 to 12 times the SDAS. Upon increasing the amount of cooling water from 2.0 to 3.5 m3/h, the dendrite fragments exhibit an obvious aggregation following V-EMS. Finally, a criterion for dendrite fragmentation under V-EMS was derived based on the dendrite fragmentation theory of Campanella et al.
Metals and Materials International | 2017
Congcong Zhao; Xiaowei Zuo; Engang Wang; Ke Han
Cu-Ag composite is one of the best conductors for high-field magnets. Increasing its strength is crucial for designing newer high-field magnets. Cu-28 wt%Ag samples were solidified with and without a 12-T high magnetic field (HMF), and then cold-drawn. We investigated the influence of HMF on microstructure, hardness and strength of Cu-Ag samples both before and after cold-drawing. The introduction of external HMF during solidification increased both the dendrite arm spacing and the dissolved Ag in Cu, and it reduced the spacing between both the Ag precipitates in proeutectic Cu and the eutectic lamellae. The transversal microstructure after cold-drawing inherited the network solidification structure, but at a refined scale. The Cu dendrite spacing in the 12-T HMF samples at all deformation strain was larger than that without HMF. HMF slightly increased the intensity of <111> fiber texture of Cu, which strengthened proeutectic Cu at the level of 3.5 deformation strain. In samples deformed to strain of 3.5, refined Ag precipitation spacing, increased Ag solubility in Cu matrix, and refined eutectic lamellar spacing by 12-T HMF increased the strength by 5% in the sample compared with that without HMF.
Materials | 2016
Xiaowei Zuo; Congcong Zhao; Lin Zhang; Engang Wang
We report the influence of growth rate and external magnetic field on the eutectic lamellar spacing and properties of directionally-solidified Ag-Cu eutectic alloys. The results indicated that the relationship between the lamellar spacing of directionally-solidified Ag-Cu alloys and the growth rate matched the prediction of the Jackson-Hunt model, and the constant was 5.8 µm3/s. The increasing external magnetic field during solidification tilted the growth direction of the lamellar eutectics, and coarsened the eutectic lamellar spacing. These decreased the microhardness and strength of Ag-Cu alloys, but increased their electrical conductivity. The competitive strengthening contributions between the refinement of the eutectic lamellar spacing and the change in growth direction of the eutectics resulted in higher strength in the as-rolled sample with a 0.8 T magnetic field than with other samples, which was confirmed from higher relieved deformation energy using differential scanning calorimetry.
Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science | 2017
Zhuang Li; Engang Wang; Lintao Zhang; Yu Xu; An-yuan Deng
The steel/slag interface behavior under a new type of electromagnetic brake (EMBr), vertical electromagnetic brake (V-EMBr), was investigated. The influence of the magnetic induction intensity, the submerged entry nozzle (SEN) immersion depth, and the port angle of the SEN are investigated numerically. The effect of magnetic induction intensity on the meniscus fluctuation of molten alloy is further studied by the experiments. The results show that the meniscus fluctuation is depressed as the magnetic induction intensity is increased, especially for the region in the vicinity of the narrow face of the slab mold. This result is validated by the following experiments. For the influence of the SEN immersion depth and the port angle, the results show that the meniscus fluctuation is suppressed as the values of the immersion depth and the port angle are increased (absolute values for the port angle). However, the influence of the immersion depth and the port angle are not as sensitive as those in the other type of EMBr, e.g., EMBr Ruler. The industrial application of V-EMBr could benefit from this result.
Journal of Iron and Steel Research International | 2016
Lin Zhang; Ke Han; Tiannan Man; Engang Wang; Xiaowei Zuo
The effect of electromagnetic stirring (EMS) on microstructure and performance of Ag-8 mass% Ni composite was investigated under both solidified and deformed conditions. Without EMS, the Ag matrix formed short, thick dendrites in the ingot; whereas with EMS, dendrites were long and slim. Ni phase mainly formed particles or ribbons, distributed along boundaries between dendrite arms. Cold drawing of the solidified Ag-Ni ingots, both with and without EMS, produced high strength in-situ metal-matrix composite (MMC) consisting of Ag matrix reinforced by Ni ribbons. EMS improved the ductility of the composite, consequently enhancing its drawability and strength. EMS also increased the electrical conductivity in both solidified ingots and deformed in-situ composite wires. In both cases, hardness and tensile strength remained high. A model based on a combination of the modified linear rule of mixtures and the Hall-Petch relationship was used to rationalize the tensile strength and hardness with respect to its fabrication parameters and the microstructure of Ag-Ni in-situ composite.
Materials Science Forum | 2012
Engang Wang; En Jiang; Guo Feng Zhan; An Yuan Deng; Jicheng He
The evolution of solidification structure in Incoloy800 with and without electromagnetic stirring (EMS) are studied to investigate its influence on the morphology of solidifying crystals and element segregation. The samples examination and EDX analysis show that some broken dendrite in the subsurface of the ingot were brought into the internal part of the ingot, it is proves the shear mechanism of EMS to dendrite or column crystal in the initial solidifying period, and the equiaxed grain region is formed in the internal part of ingots owing to the stirring effect of EMS. Both of them are helpful to reduce the element segregation in Incoly800 ingots.
Metals and Materials International | 2017
Xiaowei Zuo; Jianzheng Zhu; Bailing An; Ke Han; Rui Li; Engang Wang
We investigated the effects of Fe content on microstructure and properties in as-cast and as-drawn Cu-(5.1-x) vol%Ag-x vol%Fe alloys. In microscale, increasing Fe content first refined and then coarsened Cu dendrites. In nanoscale, the size and length of Ag precipitates in Fe-doped alloys were smaller than the size and length of Ag precipitates in Fe-free alloy, and the γ-Fe precipitates in Cu-2.9 vol%Ag-2.4 vol%Fe alloy were finer than the γ-Fe precipitates in Cu-5.1 vol%Fe alloy. The maximum hardness in as-cast Cu-Ag-Fe alloys was found in the Cu-2.9 vol%Ag-2.4 vol%Fe alloy. With increasing drawing strain, both ultimate tensile strength and hardness of Cu-Ag-Fe composites were increased. Simulation data among the relative volume fractions of Fe, hardness and electrical conductivity showed that, as the relative value approached 40%, the Cu-Ag-Fe composite displayed greater hardness than other samples. As a small amount of Ag was replaced by Fe, the electrical conductivity decreased significantly with a descending slope of approximately 3%IACS (International Annealed Copper Standard) per vol% Fe. As 47 vol%Ag was replaced by Fe, however, the electrical conductivity decreased by 51% and remained almost invariable with further increasing Fe content. After annealing at 450 °C for 4 h, the electrical conductivity of the Cu-2.9 vol%Ag-2.4 vol%Fe composite was elevated up to 68.3%IACS from 38.5%IACS.
Materials | 2017
Lin Zhang; Tiannan Man; Minghao Huang; Jianwen Gao; Xiaowei Zuo; Engang Wang
A model has been presented for the coarsening of the dispersed phase of liquid-liquid two-phase mixtures in Cu-Pb alloys under the effect of a high magnetic field (HMF). The numerical results show that the evolution of size distribution is the result of several factors and the diffusional growth, the collision-coagulation of the Cu-rich droplets (gravity sedimentation and Marangoni migration), and melt flow also have obvious effects on the movement of droplets and coarsening process. The effect of the HMF in the coarsening process of Cu-Pb alloy is studied in this work both by simulation and experiment. The analysis shows that the HMF leads to a decrease in the melt flow velocity, and can also lead to a decrease in the moving velocity of Cu-rich droplets. The HMF significantly reduces the coarsening rate of droplets as compared by the distribution evolutions. Finally, it is shown that droplet collision and coagulation can be dramatically retarded by the HMF. The results of the simulation are compared with the experiments performed with immiscible Cu-Pb alloys, and the discrepancy between theory and experiment is discussed.
Materials Science Forum | 2010
Engang Wang; Lei Qu; Xiaowei Zuo; Lin Zhang; Jicheng He
The Cu-12.8wt%Fe alloys are prepared in a vacuum induction furnace and then drawn to Cu-Fe composite wires with the drawing ratio of 8.2. The thermal stability of Fe filaments in the deformed Cu-12.8wt% Fe composite wires under different annealed temperature is investigated. The results show that the instability of the Fe filaments in the Cu-Fe composites is controlled by the longitudinal boundary splitting, then the splitting Fe filaments subsequently evolve into the cylinders. The thermal instability of the cylindrical Fe filaments is controlled by the two instability modes of Rayleigh perturbation and two dimensional Ostwald coarsening. The model calculations of two modes indicate that the perturbation breakup of cylindrical Fe filaments firstly occurs at the ones with smaller diameter. The breakup time of cylindrical Fe filaments decreases with the increasing of the annealing temperature. The coarsening diameters of cylindrical Fe filaments increase in linear proportion with the holding time. The smaller is the diameter of cylindrical Fe filaments, the larger is the coarsening rate.