Engin Türetken
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Engin Türetken.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011
Jérôme Berclaz; François Fleuret; Engin Türetken; Pascal Fua
Multi-object tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory will nevertheless be produced. By contrast, a false-positive detection in a few frames will be ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results in a convex problem. We take advantage of its particular structure to solve it using the k-shortest paths algorithm, which is very fast. This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance in two very different contexts.
Neuroinformatics | 2011
Engin Türetken; Germán González; Christian Blum; Pascal Fua
We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement.
computer vision and pattern recognition | 2012
Engin Türetken; Fethallah Benmansour; Pascal Fua
Although tracing linear structures in 2D images and 3D image stacks has received much attention over the years, full automation remains elusive. In this paper, we formulate the delineation problem as one of solving a Quadratic Mixed Integer Program (Q-MIP) in a graph of potential paths, which can be done optimally up to a very small tolerance. We further propose a novel approach to weighting these paths, which results in a Q-MIP solution that accurately matches the ground truth. We demonstrate that our approach outperforms a state-of-the-art technique based on the k-Minimum Spanning Tree formulation on a 2D dataset of aerial images and a 3D dataset of confocal microscopy stacks.
computer vision and pattern recognition | 2013
Engin Türetken; Fethallah Benmansour; Bjoern Andres; Hanspeter Pfister; Pascal Fua
We propose a novel approach to automated delineation of linear structures that form complex and potentially loopy networks. This is in contrast to earlier approaches that usually assume a tree topology for the networks. At the heart of our method is an Integer Programming formulation that allows us to find the global optimum of an objective function designed to allow cycles but penalize spurious junctions and early terminations. We demonstrate that it outperforms state-of-the-art techniques on a wide range of datasets.
european conference on computer vision | 2014
Xinchao Wang; Engin Türetken; François Fleuret; Pascal Fua
In this paper, we show that tracking different kinds of interacting objects can be formulated as a network-flow Mixed Integer Program. This is made possible by tracking all objects simultaneously and expressing the fact that one object can appear or disappear at locations where another is in terms of linear flow constraints. We demonstrate the power of our approach on scenes involving cars and pedestrians, bags being carried and dropped by people, and balls being passed from one player to the next in a basketball game. In particular, we show that by estimating jointly and globally the trajectories of different types of objects, the presence of the ones which were not initially detected based solely on image evidence can be inferred from the detections of the others.
computer vision and pattern recognition | 2010
Germán González; Engin Türetken; Franc¸ois Fleuret; Pascal Fua
We present a novel approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, our method builds a set of candidate trees over many different subsets of points likely to belong to the final one and then chooses the best one according to a global objective function. Since we are not systematically trying to span all nodes, our algorithm is able to eliminate noise while retaining the right tree structure. Manually annotated dendrite micrographs and retinal scans are used to evaluate the performance of our method, which is shown to be able to reject noise while retaining the tree structure.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Amos Sironi; Engin Türetken; Vincent Lepetit; Pascal Fua
Finding the centerline and estimating the radius of linear structures is a critical first step in many applications, ranging from road delineation in 2D aerial images to modeling blood vessels, lung bronchi, and dendritic arbors in 3D biomedical image stacks. Existing techniques rely either on filters designed to respond to ideal cylindrical structures or on classification techniques. The former tend to become unreliable when the linear structures are very irregular while the latter often has difficulties distinguishing centerline locations from neighboring ones, thus losing accuracy. We solve this problem by reformulating centerline detection in terms of a regression problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets. Moreover, our approach is very generic and also performs well on contour detection. We show an improvement above recent contour detection algorithms on the BSDS500 dataset.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Xinchao Wang; Engin Türetken; François Fleuret; Pascal Fua
In this paper, we show that tracking different kinds of interacting objects can be formulated as a network-flow mixed integer program. This is made possible by tracking all objects simultaneously using intertwined flow variables and expressing the fact that one object can appear or disappear at locations where another is in terms of linear flow constraints. Our proposed method is able to track invisible objects whose only evidence is the presence of other objects that contain them. Furthermore, our tracklet-based implementation yields real-time tracking performance. We demonstrate the power of our approach on scenes involving cars and pedestrians, bags being carried and dropped by people, and balls being passed from one player to the next in team sports. In particular, we show that by estimating jointly and globally the trajectories of different types of objects, the presence of the ones which were not initially detected based solely on image evidence can be inferred from the detections of the others.
international conference on computer vision | 2013
Engin Türetken; Carlos Joaquin Becker; Przemyslaw Glowacki; Fethallah Benmansour; Pascal Fua
We propose a new approach to detecting irregular curvilinear structures in noisy image stacks. In contrast to earlier approaches that rely on circular models of the cross-sections, ours allows for the arbitrarily-shaped ones that are prevalent in biological imagery. This is achieved by maximizing the image gradient flux along multiple directions and radii, instead of only two with a unique radius as is usually done. This yields a more complex optimization problem for which we propose a computationally efficient solution. We demonstrate the effectiveness of our approach on a wide range of challenging gray scale and color datasets and show that it outperforms existing techniques, especially on very irregular structures.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Engin Türetken; Fethallah Benmansour; Bjoern Andres; Przemyslaw Glowacki; Hanspeter Pfister; Pascal Fua
We propose a novel approach to automated delineation of curvilinear structures that form complex and potentially loopy networks. By representing the image data as a graph of potential paths, we first show how to weight these paths using discriminatively-trained classifiers that are both robust and generic enough to be applied to very different imaging modalities. We then present an Integer Programming approach to finding the optimal subset of paths, subject to structural and topological constraints that eliminate implausible solutions. Unlike earlier approaches that assume a tree topology for the networks, ours explicitly models the fact that the networks may contain loops, and can reconstruct both cyclic and acyclic ones. We demonstrate the effectiveness of our approach on a variety of challenging datasets including aerial images of road networks and micrographs of neural arbors, and show that it outperforms state-of-the-art techniques.