Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enric Domingo is active.

Publication


Featured researches published by Enric Domingo.


Nature Genetics | 2008

Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer

Richard S. Houlston; Emily L. Webb; Peter Broderick; Alan Pittman; Maria Chiara Di Bernardo; Steven Lubbe; Ian Chandler; Jayaram Vijayakrishnan; Kate Sullivan; Steven Penegar; Luis Carvajal-Carmona; Kimberley Howarth; Emma Jaeger; Sarah L. Spain; Axel Walther; Ella Barclay; Lynn Martin; Maggie Gorman; Enric Domingo; Ana Teixeira; David Kerr; Jean-Baptiste Cazier; Iina Niittymäki; Sari Tuupanen; Auli Karhu; Lauri A. Aaltonen; Ian Tomlinson; Susan M. Farrington; Albert Tenesa; James Prendergast

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly influence the risk of developing colorectal cancer (CRC). To enhance power to identify additional loci with similar effect sizes, we conducted a meta-analysis of two GWA studies, comprising 13,315 individuals genotyped for 38,710 common tagging SNPs. We undertook replication testing in up to eight independent case-control series comprising 27,418 subjects. We identified four previously unreported CRC risk loci at 14q22.2 (rs4444235, BMP4; P = 8.1 × 10−10), 16q22.1 (rs9929218, CDH1; P = 1.2 × 10−8), 19q13.1 (rs10411210, RHPN2; P = 4.6 × 10−9) and 20p12.3 (rs961253; P = 2.0 × 10−10). These findings underscore the value of large sample series for discovery and follow-up of genetic variants contributing to the etiology of CRC.


Nature Genetics | 2013

Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas

Claire Palles; Jean-Baptiste Cazier; Kimberley Howarth; Enric Domingo; Angela Jones; Peter Broderick; Zoe Kemp; Sarah L. Spain; Estrella Guarino; Israel Salguero; Amy Sherborne; Daniel Chubb; Luis Carvajal-Carmona; Yusanne Ma; Kulvinder Kaur; Sara E. Dobbins; Ella Barclay; Maggie Gorman; Lynn Martin; Michal Kovac; Sean Humphray; Anneke Lucassen; Christopher Holmes; David R. Bentley; Peter Donnelly; Jenny C. Taylor; Christos Petridis; Rebecca Roylance; Elinor Sawyer; David Kerr

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Nature Genetics | 2007

A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk

Peter Broderick; Luis Carvajal-Carmona; Alan Pittman; Emily L. Webb; Kimberley Howarth; Andrew Rowan; Steven Lubbe; Sarah L. Spain; Kate Sullivan; Sarah Fielding; Emma Jaeger; Jayaram Vijayakrishnan; Zoe Kemp; Maggie Gorman; Ian Chandler; Elli Papaemmanuil; Steven Penegar; Wendy Wood; Gabrielle S. Sellick; Mobshra Qureshi; Ana Teixeira; Enric Domingo; Ella Barclay; Lynn Martin; Oliver M. Sieber; David Kerr; Richard Gray; Julian Peto; Jean Baptiste Cazier; Ian Tomlinson

To identify risk variants for colorectal cancer (CRC), we conducted a genome-wide association study, genotyping 550,163 tag SNPs in 940 individuals with familial colorectal tumor (627 CRC, 313 advanced adenomas) and 965 controls. We evaluated selected SNPs in three replication sample sets (7,473 cases, 5,984 controls) and identified three SNPs in SMAD7 (involved in TGF-β and Wnt signaling) associated with CRC. Across the four sample sets, the association between rs4939827 and CRC was highly statistically significant (Ptrend = 1.0 × 10−12).


Nature | 2013

Replication stress links structural and numerical cancer chromosomal instability.

Rebecca A. Burrell; Sarah E. McClelland; David Endesfelder; Petra Groth; Marie-Christine Weller; Nadeem Shaikh; Enric Domingo; Nnennaya Kanu; Sally M. Dewhurst; Eva Grönroos; Su Kit Chew; Andrew Rowan; Arne Schenk; Michal Sheffer; Michael Howell; Maik Kschischo; Axel Behrens; Thomas Helleday; Jiri Bartek; Ian Tomlinson; Charles Swanton

Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN+ colorectal cancer (CRC) cells relative to CIN− CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN+ CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma–carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN+ cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.


Journal of Medical Genetics | 2004

BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing

Enric Domingo; Päivi Laiho; Miina Ollikainen; Mafalda Pinto; Liang Wang; Amy J. French; Jantine L. Westra; Thierry Frebourg; E Espin; Manel Armengol; Richard Hamelin; Hiroyuki Yamamoto; Robert Hofstra; Raquel Seruca; Annika Lindblom; Päivi Peltomäki; Stephen N. Thibodeau; Lauri A. Aaltonen; Simó Schwartz

Background: According to the international criteria for hereditary non-polyposis colorectal cancer (HNPCC) diagnostics, cancer patients with a family history or early onset of colorectal tumours showing high microsatellite instability (MSI-H) should receive genetic counselling and be offered testing for germline mutations in DNA repair genes, mainly MLH1 and MSH2. Recently, an oncogenic V600E hotspot mutation within BRAF, a kinase encoding gene from the RAS/RAF/MAPK pathway, has been found to be associated with sporadic MSI-H colon cancer, but its association with HNPCC remains to be further clarified. Methods: BRAF-V600E mutations were analysed by automatic sequencing in colorectal cancers from 206 sporadic cases with MSI-H and 111 HNPCC cases with known germline mutations in MLH1 and MSH2. In addition, 45 HNPCC cases showing abnormal immunostaining for MSH2 were also analysed. Results: The BRAF-V600E hotspot mutation was found in 40% (82/206) of the sporadic MSI-H tumours analysed but in none of the 111 tested HNPCC tumours or in the 45 cases showing abnormal MSH2 immunostaining. Conclusions: Detection of the V600E mutation in a colorectal MSI-H tumour argues against the presence of a germline mutation in either the MLH1 or MSH2 gene. Therefore, screening of these mismatch repair (MMR) genes can be avoided in cases positive for V600E if no other significant evidence, such as fulfilment of the strict Amsterdam criteria, suggests MMR associated HNPCC. In this context, mutation analysis of the BRAF hotspot is a reliable, fast, and low cost strategy which simplifies genetic testing for HNPCC.


Nature Genetics | 2010

Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33

Richard S. Houlston; Jeremy Peter Cheadle; Sara E. Dobbins; Albert Tenesa; Angela Jones; Kimberley Howarth; Sarah L. Spain; Peter Broderick; Enric Domingo; Susan M. Farrington; James Prendergast; Alan Pittman; Evi Theodoratou; Christopher Smith; Bianca Olver; Axel Walther; Rebecca A. Barnetson; Michael Churchman; Emma Jaeger; Steven Penegar; Ella Barclay; Lynn Martin; Maggie Gorman; Rachel Mager; Elaine Johnstone; Rachel Midgley; Iina Niittymäki; Sari Tuupanen; James Colley; Shelley Idziaszczyk

Genome-wide association studies (GWAS) have identified ten loci harboring common variants that influence risk of developing colorectal cancer (CRC). To enhance the power to identify additional CRC risk loci, we conducted a meta-analysis of three GWAS from the UK which included a total of 3,334 affected individuals (cases) and 4,628 controls followed by multiple validation analyses including a total of 18,095 cases and 20,197 controls. We identified associations at four new CRC risk loci: 1q41 (rs6691170, odds ratio (OR) = 1.06, P = 9.55 × 10−10 and rs6687758, OR = 1.09, P = 2.27 × 10−9), 3q26.2 (rs10936599, OR = 0.93, P = 3.39 × 10−8), 12q13.13 (rs11169552, OR = 0.92, P = 1.89 × 10−10 and rs7136702, OR = 1.06, P = 4.02 × 10−8) and 20q13.33 (rs4925386, OR = 0.93, P = 1.89 × 10−10). In addition to identifying new CRC risk loci, this analysis provides evidence that additional CRC-associated variants of similar effect size remain to be discovered.


Nature Genetics | 2008

Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk

Emma Jaeger; Emily L. Webb; Kimberley Howarth; Luis Carvajal-Carmona; Andrew Rowan; Peter Broderick; Axel Walther; Sarah L. Spain; Alan Pittman; Zoe Kemp; Kate Sullivan; Karl Heinimann; Steven Lubbe; Enric Domingo; Ella Barclay; Lynn Martin; Maggie Gorman; Ian Chandler; Jayaram Vijayakrishnan; Wendy Wood; Elli Papaemmanuil; Steven Penegar; Mobshra Qureshi; Susan M. Farrington; Albert Tenesa; Jean Baptiste Cazier; David Kerr; Richard Gray; Julian Peto; Malcolm G. Dunlop

We mapped a high-penetrance gene (CRAC1; also known as HMPS) associated with colorectal cancer (CRC) in the Ashkenazi population to a 0.6-Mb region on chromosome 15 containing SCG5 (also known as SGNE1), GREM1 and FMN1. We hypothesized that the CRAC1 locus harbored low-penetrance variants that increased CRC risk in the general population. In a large series of colorectal cancer cases and controls, SNPs near GREM1 and SCG5 were strongly associated with increased CRC risk (for rs4779584, P = 4.44 × 10−14).


Nature Genetics | 2012

Common variation near CDKN1A , POLD3 and SHROOM2 influences colorectal cancer risk

Malcolm G. Dunlop; Sara E. Dobbins; Susan M. Farrington; Angela Jones; Claire Palles; Nicola Whiffin; Albert Tenesa; Sarah L. Spain; Peter Broderick; Li-Yin Ooi; Enric Domingo; Claire Smillie; Marc Henrion; Matthew Frampton; Lynn Martin; Graeme Grimes; Maggie Gorman; Colin A. Semple; Yusanne P Ma; Ella Barclay; James Prendergast; Jean-Baptiste Cazier; Bianca Olver; Steven Penegar; Steven Lubbe; Ian Chander; Luis Carvajal-Carmona; Stephane Ballereau; Amy Lloyd; Jayaram Vijayakrishnan

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10−10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10−10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10−10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.


Oncogene | 2005

BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes

Enric Domingo; Renée C. Niessen; Carla Oliveira; Pia Alhopuro; Catia Moutinho; Eloi Espín; Manel Armengol; Rolf H. Sijmons; Jan H. Kleibeuker; Raquel Seruca; Lauri A. Aaltonen; Kohzoh Imai; Hiroyuki Yamamoto; Simó Schwartz; Robert M. W. Hofstra

Recently, it was shown that the oncogenic activation of BRAF, a member of the RAS/RAF family of kinases, by the V600E mutation is characteristic for sporadic colon tumors with microsatellite instability. Further, it was shown to associate with the silencing of the mismatch repair (MMR) gene MLH1 by hypermethylation. Moreover, BRAF mutations proved to be absent in tumors from hereditary nonpolyposis colorectal cancer syndrome (HNPCC) families with germline mutations in the MMR genes MLH1 and MSH2. These data suggest that the oncogenic activation of BRAF is involved only in sporadic colorectal tumorigenesis. In order to further support this hypothesis, we have extended the analysis of the BRAF gene to a different subset of HNPCC families without germline mutations in MLH1 and MSH2. BRAF-V600E mutations were analysed by automatic sequencing in 38 tumors from HNPCC families with germline mutations in the MSH6 gene and also in HNPCC (suspected) families that do not have mutations in the MMR genes MLH1, MSH2 and MSH6. All patients belong to different families. No mutations were detected in 14 tumors from HNPCC patients with germline mutations in MSH6. Further, no mutations of BRAF were found in tumors from 23 MMR-negative families, from which 13 fulfilled the Amsterdam criteria (HNPCC) and 10 were suspected for HNPCC as they were positive for the Bethesda criteria. Overall, our data reinforce the concept that BRAF is not involved in the colorectal tumorigenesis of HNPCC. The detection of a positive BRAF-V600E mutation in a colorectal cancer suggests a sporadic origin of the disease and the absence of germline alterations of MLH1, MSH2 and also of MSH6. These findings have a potential impact in the genetic testing for HNPCC diagnostics and suggest a potential use of BRAF as exclusion criteria for HNPCC or as a molecular marker of sporadic cancer.


Human Molecular Genetics | 2013

DNA polymerase ɛ and δ exonuclease domain mutations in endometrial cancer

David N. Church; Sarah Briggs; Claire Palles; Enric Domingo; Stephen J. Kearsey; Jonathon M. Grimes; Maggie Gorman; Lynn Martin; Kimberley Howarth; Shirley Hodgson; Kulvinder Kaur; Jenny C. Taylor; Ian Tomlinson

Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ɛ, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5–10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.

Collaboration


Dive into the Enric Domingo's collaboration.

Top Co-Authors

Avatar

Ian Tomlinson

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

David Kerr

London Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jaume Figueras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jordi Soler-Soler

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antonio Roman

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimberley Howarth

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Novelli

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge