Enric Vidal
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enric Vidal.
Acta Neuropathologica | 2002
S. Sisó; B. Puig; R. Varea; Enric Vidal; Cristina Acín; Marco Prinz; Fabio Montrasio; Juan José Badiola; Adriano Aguzzi; M. Pumarola; Isidre Ferrer
Abstract. Reduced expression of synaptophysin p38, synaptic-associated protein of molecular weight 25,000 (SNAP-25), syntaxin-1, synapsin-1, and α- and β-synuclein, matching the distribution of spongiform degeneration, was found in the neurological phase of scrapie-infected mice. In addition, synaptophysin and SNAP-25 were accumulated in isolated neurons, mainly in the thalamus, midbrain and pons, and granular deposits of α- and β-synuclein were present in the neuropil of the same areas. No modifications in the steady state levels of Bcl-2, Bax, Fas and Fas ligand were observed following infection. Yet antibodies against the c-Jun N-terminal peptide, which cross-react with products emerging after caspase-mediate proteolysis, recognize coarse granular deposits in the cytoplasm of reactive microglia. In situ end-labeling of nuclear DNA fragmentation showed positive nuclei with extreme chromatin condensation in the thalamus, pons, hippocampus and, in particular, the granular layer of the cerebellum. More importantly, expression of cleaved caspase-3, a major executioner of apoptosis, was seen in a few cells in the same regions, thus indicating that cell death by apoptosis in scrapie-infected mice is associated with caspase-3 activation. The present findings support the concept that synaptic pathology is a major substrate of neurological impairment and that caspase-3 activation may play a pivotal role in apoptosis in experimental scrapie. However, there is no correlation between decreased synaptic protein expression and caspase-3-associated apoptosis, which suggests that in addition to abnormal prion protein deposition, there may be other factors that distinctively influence synaptic vulnerability and cell death in murine scrapie.
Journal of Chemical Neuroanatomy | 2007
Carme Costa; Raül Tortosa; Anna Domènech; Enric Vidal; M. Pumarola; Anna Bassols
The extracellular matrix (ECM) of the central nervous system (CNS) is found dispersed in the neuropil or forming aggregates around the neurons called perineuronal nets (PNNs). The ECM mainly contains chondroitin sulphate proteoglycans (CSPG), hyaluronic acid (HA) and tenascin-R. Heparan sulphate proteoglycans (HSPG) can also be secreted in the ECM or be part of the cell membrane. The ECM has a heterogeneous distribution which has been linked to several functions, such as specific regional maintenance of hydrodynamic properties in the CNS, in which aquaporins (AQP) play an important role. AQP are a family of membrane proteins which acts as a water channel and AQP4 is the most abundant isoform in the brain. Nevertheless the importance of these proteins, their distribution and correlation in the whole CNS of mice is only partially known. In the present study, the histochemical and immunohistochemical distribution of PNNs, using Wisteria floribunda agglutinin (WFA), aggrecan, HA, HSPGs and AQP4 is described, and their perineuronal and neuropil staining has been semi-quantitatively evaluated in the whole CNS of mice. The results showed that the aggrecan, HA and HSPGs perineuronal distribution coincided partially and this could be related to ECM functional properties. AQP4 showed a heterogeneous distribution throughout the CNS. In some areas, an inverse correlation between AQP4 and ECM components has been observed, suggesting a complementary role for both in the maintenance of water homeostasis. A common location for AQP4 and HSPGs has also been observed in CNS neuropil.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Francesca Chianini; Natalia Fernández-Borges; Enric Vidal; Louise Gibbard; Belén Pintado; Jorge de Castro; Suzette A. Priola; Scott L. Hamilton; Samantha L. Eaton; Jeanie Finlayson; Yvonne Pang; Philip Steele; Hugh W. Reid; Mark P. Dagleish; Joaquín Castilla
The ability of prions to infect some species and not others is determined by the transmission barrier. This unexplained phenomenon has led to the belief that certain species were not susceptible to transmissible spongiform encephalopathies (TSEs) and therefore represented negligible risk to human health if consumed. Using the protein misfolding cyclic amplification (PMCA) technique, we were able to overcome the species barrier in rabbits, which have been classified as TSE resistant for four decades. Rabbit brain homogenate, either unseeded or seeded in vitro with disease-related prions obtained from different species, was subjected to serial rounds of PMCA. De novo rabbit prions produced in vitro from unseeded material were tested for infectivity in rabbits, with one of three intracerebrally challenged animals succumbing to disease at 766 d and displaying all of the characteristics of a TSE, thereby demonstrating that leporids are not resistant to prion infection. Material from the brain of the clinically affected rabbit containing abnormal prion protein resulted in a 100% attack rate after its inoculation in transgenic mice overexpressing rabbit PrP. Transmissibility to rabbits (>470 d) has been confirmed in 2 of 10 rabbits after intracerebral challenge. Despite rabbits no longer being able to be classified as resistant to TSEs, an outbreak of “mad rabbit disease” is unlikely.
PLOS Pathogens | 2016
Ester Vázquez-Fernández; Matthijn R. J. Vos; Pavel Afanasyev; Lino Cebey; Alejandro M. Sevillano; Enric Vidal; Isaac Rosa; Ludovic Renault; Adriana Ramos; Peter J. Peters; José Jesús Fernández; Marin van Heel; Howard S. Young; Jesús R. Requena; Holger Wille
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27–30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27–30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27–30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.
Neurogastroenterology and Motility | 2007
Ricard Farré; Xuan-Yu Wang; Enric Vidal; Anna Domènech; M. Pumarola; Pere Clavé; Jan D. Huizinga; Marcel Jiménez
Abstract The distribution of interstitial cells of Cajal (ICC) and neurotransmission were investigated in lower oesophageal sphincter (LES) circular muscle strips from Sprague–Dawley (SD) rats, Ws/Ws mutant rats and their wild‐type (+/+) siblings. Intramuscular c‐Kit‐positive cells, confirmed to be ICC‐IM by electron microscopy, were observed throughout both muscle layers from SD and +/+ rats. In contrast, c‐Kit‐positive, ultrastructurally typical ICC‐IM were absent in Ws/Ws. LES strips from Ws/Ws rats showed increased spontaneous contractile activity. Strips from SD and +/+ rats, responded to electrical neuronal stimulation with a relaxation that was in part L‐NNA and in part apamin sensitive, followed by a contraction which was decreased by atropine. In Ws/Ws rats, similar to +/+ rats, neurally mediated relaxation was L‐NNA and apamin sensitive and the contraction was decreased by atropine. We conclude that in the rat LES, relaxation is mediated by NO and an apamin‐sensitive mediator, and contraction primarily by acetylcholine. Despite the absence of c‐Kit‐positive ICC, nerve–muscle interaction can be accomplished likely by diffusion of neurotransmitters to the smooth muscle cells. The lack of c‐Kit‐positive ICC is related to an increase in the basal tone and spontaneous contractile activity. The presence of fibroblast‐like ICC in Ws/Ws rats might represent immature ICC whose possible functions need further investigation.
PLOS ONE | 2012
Ester Vázquez-Fernández; Jana Alonso; Miguel A. Pastrana; Adriana Ramos; Lothar Stitz; Enric Vidal; Irina Dynin; Benjamin Petsch; Christopher J. Silva; Jesús R. Requena
Elucidation of the structure of PrPSc continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrPSc). However, the presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-based analysis impractical. In order to surmount these difficulties we analyzed PrPSc from transgenic mice expressing prion protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot and mass spectrometry-based analysis. GPI-less PrPSc samples were digested with PK. PK-resistant peptides were identified, and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179. The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrPSc. These results reinforce the hypothesis that the structure of PrPSc consists of a series of highly PK-resistant β-sheet strands connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrPSc is highly resistant to PK and therefore perhaps also contains β-sheet secondary structure.
Prion | 2012
Natalia Fernández-Borges; Francesca Chianini; Hasier Eraña; Enric Vidal; Samantha L. Eaton; Belén Pintado; Jeanie Finlayson; Mark P. Dagleish; Joaquín Castilla
Each known abnormal prion protein (PrPSc) is considered to have a specific range and therefore the ability to infect some species and not others. Consequently, some species have been assumed to be prion disease resistant as no successful natural or experimental challenge infections have been reported. This assumption suggested that, independent of the virulence of the PrPSc strain, normal prion protein (PrPC) from these ‘resistant’ species could not be induced to misfold. Numerous in vitro and in vivo studies trying to corroborate the unique properties of PrPSc have been undertaken. The results presented in the article “Rabbits are not resistant to prion infection” demonstrated that normal rabbit PrPC, which was considered to be resistant to prion disease, can be misfolded to PrPSc and subsequently used to infect and transmit a standard prion disease to leporids. Using the concept of species resistance to prion disease, we will discuss the mistake of attributing species specific prion disease resistance based purely on the absence of natural cases and incomplete in vivo challenges. The BSE epidemic was partially due to an underestimation of species barriers. To repeat this error would be unacceptable, especially if present knowledge and techniques can show a theoretical risk. Now that the myth of prion disease resistance has been refuted it is time to re-evaluate, using the new powerful tools available in modern prion laboratories, whether any other species could be at risk.
The Journal of Neuroscience | 2013
Enric Vidal; Natalia Fernández-Borges; Belén Pintado; Montserrat Ordóñez; M. Márquez; Dolors Fondevila; Juan Maria Torres; M. Pumarola; Joaquín Castilla
Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrPc) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrPC. Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.
Research in Veterinary Science | 2014
Mariano Domingo; Enric Vidal; A. Marco
Bovine tuberculosis (bTB) is a chronic granulomatous caseous-necrotising inflammatory process that mainly affects the lungs and their draining lymph nodes (Ln.). The pathological changes associated with bTB infection reflect the interplay between the host defence mechanisms and the mycobacterial virulence factors and the balance between the immunologic protective responses and the damaging inflammatory processes. Inhalation is the most common infection route and causes lesions of the nasopharynx and lower respiratory tract, including its associated lymph nodes. The initial infection (primary complex) may be followed by chronic (post-primary) tuberculosis or may be generalised. Goat tuberculosis often produces liquefactive necrosis and caverns, similarly to human TB. The assessment of the severity of TB lesions is crucial for vaccine trials. Semi-quantitative gross lesion scoring systems have been developed for cattle, but imaging technology has allowed the development of more standardised, objective, and quantitative methods, such as multi-detector computed tomography (MDCT), which provides quantitative measures of lesion volume.
PLOS ONE | 2013
Bernat Pérez de Val; Enric Vidal; Bernardo Villarreal-Ramos; Sarah C. Gilbert; Anna Andaluz; Xavier Moll; Maite Martín; Miquel Nofrarías; Helen McShane; H. Martin Vordermeier; Mariano Domingo
The “One world, one health” initiative emphasizes the need for new strategies to control human and animal tuberculosis (TB) based on their shared interface. A good example would be the development of novel universal vaccines against Mycobacterium tuberculosis complex (MTBC) infection. This study uses the goat model, a natural TB host, to assess the protective effectiveness of a new vaccine candidate in combination with Bacillus Calmette-Guerin (BCG) vaccine. Thirty-three goat kids were divided in three groups: Group 1) vaccinated with BCG (week 0), Group 2) vaccinated with BCG and boosted 8 weeks later with a recombinant adenovirus expressing the MTBC antigens Ag85A, TB10.4, TB9.8 and Acr2 (AdTBF), and Group 3) unvaccinated controls. Later on, an endobronchial challenge with a low dose of M. caprae was performed (week 15). After necropsy (week 28), the pulmonary gross pathology was quantified using high resolution Computed Tomography. Small granulomatous pulmonary lesions (< 0.5 cm diameter) were also evaluated through a comprehensive qualitative histopathological analysis. M. caprae CFU were counted from pulmonary lymph nodes. The AdTBF improved the effects of BCG reducing gross lesion volume and bacterial load, as well as increasing weight gain. The number of Ag85A-specific gamma interferon-producing memory T-cells was identified as a predictor of vaccine efficacy. Specific cellular and humoral responses were measured throughout the 13-week post-challenge period, and correlated with the severity of lesions. Unvaccinated goats exhibited the typical pathological features of active TB in humans and domestic ruminants, while vaccinated goats showed only very small lesions. The data presented in this study indicate that multi-antigenic adenoviral vectored vaccines boosts protection conferred by vaccination with BCG.