Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrica Saponara is active.

Publication


Featured researches published by Enrica Saponara.


Diabetes | 2014

Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin- Producing Cells

Richard A. Zuellig; Thorsten Hornemann; Alaa Othman; Adrian B. Hehl; Heiko Bode; Tanja Güntert; Omolara O. Ogunshola; Enrica Saponara; Kamile Grabliauskaite; Udo Ungethuem; Yu Wei; Arnold von Eckardstein; Rolf Graf; Sabrina Sonda

Irreversible failure of pancreatic β-cells is the main culprit in the pathophysiology of diabetes, a disease that is now a global epidemic. Recently, elevated plasma levels of deoxysphingolipids, including 1-deoxysphinganine, have been identified as a novel biomarker for the disease. In this study, we analyzed whether deoxysphingolipids directly compromise the functionality of insulin-producing Ins-1 cells and primary islets. Treatment with 1-deoxysphinganine induced dose-dependent cytotoxicity with senescent, necrotic, and apoptotic characteristics and compromised glucose-stimulated insulin secretion. In addition, 1-deoxysphinganine altered cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the Rho family GTPase Rac1. Moreover, 1-deoxysphinganine selectively upregulated ceramide synthase 5 expression and was converted to 1-deoxy-dihydroceramides without altering normal ceramide levels. Inhibition of intracellular 1-deoxysphinganine trafficking and ceramide synthesis improved the viability of the cells, indicating that the intracellular metabolites of 1-deoxysphinganine contribute to its cytotoxicity. Analyses of signaling pathways identified Jun N-terminal kinase and p38 mitogen-activated protein kinase as antagonistic effectors of cellular senescence. The results revealed that 1-deoxysphinganine is a cytotoxic lipid for insulin-producing cells, suggesting that the increased levels of this sphingolipid observed in diabetic patients may contribute to the reduced functionality of pancreatic β-cells. Thus, targeting deoxysphingolipid synthesis may complement the currently available therapies for diabetes.


Gut | 2013

Serotonin regulates amylase secretion and acinar cell damage during murine pancreatitis.

Sabrina Sonda; Alberto B. Silva; Kamile Grabliauskaite; Enrica Saponara; Achim Weber; Richard Züllig; Martha Bain; Theresia Reding Graf; Adrian B. Hehl; Rolf Graf

Objective Serotonin (5-hydroxytryptamine, 5-HT) is a potent bioactive molecule involved in a variety of physiological processes. In this study, the authors analysed whether 5-HT regulates zymogen secretion in pancreatic acinar cells and the development of pancreatic inflammation, a potentially lethal disease whose pathophysiology is not completely understood. Methods 5-HT regulation of zymogen secretion was analysed in pancreatic acini isolated from wild-type or tryptophan hydoxylase-1 knock-out (TPH1−/−) mice, which lack peripheral 5-HT, and in amylase-secreting pancreatic cell lines. Pancreatitis was induced by cerulein stimulation and biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks. Results Absence and reduced intracellular levels of 5-HT inhibited the secretion of zymogen granules both ex vivo and in vitro and altered cytoskeleton dynamics. In addition, absence of 5-HT resulted in attenuated pro-inflammatory response after induction of pancreatitis. TPH1−/− mice showed limited zymogen release, reduced expression of the pro-inflammatory chemokine MCP-1 and minimal leucocyte infiltration compared with wild-type animals. Restoration of 5-HT levels in TPH1−/− mice recovered the blunted inflammatory processes observed during acute pancreatitis. However, cellular damage, inflammatory and fibrotic processes accelerated in TPH1−/− mice during disease progression. Conclusions These results identify a 5-HT-mediated regulation of zymogen secretion in pancreatic acinar cells. In addition, they demonstrate that 5-HT is required for the onset but not for the progression of pancreatic inflammation. These findings provide novel insights into the normal physiology of pancreatic acinar cells and into the pathophysiology of pancreatitis, with potential therapeutic implications.


The Journal of Pathology | 2015

p21WAF1/Cip1 limits senescence and acinar-to-ductal metaplasia formation during pancreatitis

Kamile Grabliauskaite; Adrian B. Hehl; Gitta Maria Seleznik; Enrica Saponara; Kathryn Schlesinger; Richard A. Zuellig; Anja Dittmann; Martha Bain; Theresia Reding; Sabrina Sonda; Rolf Graf

Trans‐differentiation of pancreatic acinar cells into ductal‐like lesions, a process defined as acinar‐to‐ductal metaplasia (ADM), is observed in the course of organ regeneration following pancreatitis. In addition, ADM is found in association with pre‐malignant PanIN lesions and correlates with an increased risk of pancreatic adenocarcinoma (PDAC). Human PDAC samples show down‐regulation of p21WAF1/Cip1, a key regulator of cell cycle and cell differentiation. Here we investigated whether p21 down‐regulation is implicated in controlling the early events of acinar cell trans‐differentiation and ADM formation. p21‐mediated regulation of ADM formation and regression was analysed in vivo during the course of cerulein‐induced pancreatitis, using wild‐type (WT) and p21‐deficient (p21−/−) mice. Biochemical and immunohistochemical methods were used to evaluate disease progression over 2 weeks of the disease and during a recovery phase. We found that p21 was strongly up‐regulated in WT acinar cells during pancreatitis, while it was absent in ADM areas, suggesting that p21 down‐regulation is associated with ADM formation. In support of this hypothesis, p21−/− mice showed a significant increase in number and size of metaplasia. In addition, p21 over‐expression in acinar cells reduced ADM formation in vitro, suggesting that the protein regulates the metaplastic transition in a cell‐autonomous manner. p21−/− mice displayed increased expression and relocalization of β‐catenin both during pancreatitis and in the subsequent recovery phase. Finally, loss of p21 was accompanied by increased DNA damage and development of senescence. Our findings are consistent with a gate‐keeper role of p21 in acinar cells to limit senescence activation and ADM formation during pancreatic regeneration. Copyright


Journal of Hepatology | 2017

Hedgehog pathway mediates early acceleration of liver regeneration induced by a novel two-staged hepatectomy in mice

Magda Langiewicz; Andrea Schlegel; Enrica Saponara; Michael Linecker; Pieter Borger; Rolf Graf; Bostjan Humar; Pierre A. Clavien

BACKGROUND & AIMS ALPPS, a novel two-staged approach for the surgical removal of large/multiple liver tumors, combines portal vein ligation (PVL) with parenchymal transection. This causes acceleration of compensatory liver growth, enabling faster and more extensive tumor removal. We sought to identify the plasma factors thought to mediate the regenerative acceleration following ALPPS. METHODS We compared a mouse model of ALPPS against PVL and additional control surgeries (n=6 per group). RNA deep sequencing was performed to identify candidate molecules unique to ALPPS liver (n=3 per group). Recombinant protein and a neutralizing antibody combined with appropriate surgeries were used to explore candidate functions in ALPPS (n=6 per group). Indian hedgehog (IHH/Ihh) levels were assessed in human ALPPS patient plasma (n=6). RESULTS ALPPS in mouse confirmed significant acceleration of liver regeneration relative to PVL (p<0.001). Ihh mRNA, coding for a secreted ligand inducing hedgehog signaling, was uniquely upregulated in ALPPS liver (p<0.001). Ihh plasma levels rose 4h after surgery (p<0.01), along with hedgehog pathway activation and subsequent cyclin D1 induction in the liver. When combined with PVL, Ihh alone was sufficient to induce ALPPS-like acceleration of liver growth. Conversely, blocking Ihh markedly inhibited the accelerating effects of ALPPS. In the small cohort of ALPPS patients, IHH tended to be elevated early after surgery. CONCLUSIONS Ihh and hedgehog pathway activation provide the first mechanistic insight into the acceleration of liver regeneration triggered by ALPPS surgery. The accelerating potency of recombinant Ihh, and its potential effect in human ALPPS may lead to a clinical role for this protein. LAY SUMMARY ALPPS, a novel two-staged hepatectomy, accelerates liver regeneration, thereby helping to treat patients with otherwise unresectable liver tumors. The molecular mechanisms behind this accelerated regeneration are unknown. Here, we elucidate that Indian hedgehog, a secreted ligand important for fetal development, is a crucial mediator of the regenerative acceleration triggered by ALPPS surgery.


British Journal of Pharmacology | 2017

Class I histone deacetylase inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar‐to‐ductal metaplasia

Marta Bombardo; Enrica Saponara; Ermanno Malagola; Rong Chen; Gitta Maria Seleznik; Cécile Haumaitre; Evans Quilichini; Anja Zabel; Theresia Reding; Rolf Graf; Sabrina Sonda

Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease.


The Journal of Pathology | 2016

Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis

Kamile Grabliauskaite; Enrica Saponara; Theresia Reding; Marta Bombardo; Gitta Maria Seleznik; Ermanno Malagola; Anja Zabel; Carmen Faso; Sabrina Sonda; Rolf Graf

Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor‐β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ‐RII) using a Cre–LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein‐induced pancreatitis. We show that TGFβ‐RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ‐RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell‐autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ‐RII signalling stimulates the expression of cyclin‐dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ‐RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ‐based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. Copyright


The Journal of Pathology | 2015

Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas

Enrica Saponara; Kamile Grabliauskaite; Marta Bombardo; Raphael Buzzi; Alberto B. Silva; Ermanno Malagola; Yinghua Tian; Adrian B. Hehl; Elisabeth M. Schraner; Gitta Maria Seleznik; Anja Zabel; Theresia Reding; Sabrina Sonda; Rolf Graf

The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone‐stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation‐mediated tissue injury. Specifically, lack of serotonin resulted in delayed up‐regulation of progenitor genes and delayed the formation of acinar‐to‐ductal metaplasia and defective acinar cell proliferation. We identified serotonin‐dependent acinar secretion as a key step in progenitor‐based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1–Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. Copyright


British Journal of Pharmacology | 2017

Class I HDAC inhibition improves pancreatitis outcome by limiting leukocyte recruitment and acinar-to-ductal metaplasia

Marta Bombardo; Enrica Saponara; Ermanno Malagola; Rong Chen; Gitta Maria Seleznik; Cécile Haumaitre; Evans Quilichini; Anja Zabel; Theresia Reding; Rolf Graf; Sabrina Sonda

Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease.


The Journal of Pathology | 2018

Serotonin uptake is required for Rac1 activation in Kras-induced acinar-to-ductal metaplasia in the pancreas

Enrica Saponara; Michele Visentin; Francesco Baschieri; Gitta Maria Seleznik; Paola Martinelli; Irene Esposito; Johanna Buschmann; Rong Chen; Rossella Parrotta; Nathalie Borgeaud; Marta Bombardo; Ermanno Malagola; Amedeo Caflisch; Hesso Farhan; Rolf Graf; Sabrina Sonda

Pancreatic ductal adenocarcinoma (PDAC), which is the primary cause of pancreatic cancer mortality, is poorly responsive to currently available interventions. Identifying new targets that drive PDAC formation and progression is critical for developing alternative therapeutic strategies to treat this lethal malignancy. Using genetic and pharmacological approaches, we investigated in vivo and in vitro whether uptake of the monoamine serotonin [5‐hydroxytryptamine (5‐HT)] is required for PDAC development. We demonstrated that pancreatic acinar cells have the ability to readily take up 5‐HT in a transport‐mediated manner. 5‐HT uptake promoted activation of the small GTPase Ras‐related C3 botulinum toxin substrate 1 (Rac1), which is required for transdifferentiation of acinar cells into acinar‐to‐ductal metaplasia (ADM), a key determinant in PDAC development. Consistent with the central role played by Rac1 in ADM formation, inhibition of the 5‐HT transporter Sert (Slc6a4) with fluoxetine reduced ADM formation both in vitro and in vivo in a cell‐autonomous manner. In addition, fluoxetine treatment profoundly compromised the stromal reaction and affected the proliferation and lipid metabolism of malignant PDAC cells. We propose that Sert is a promising therapeutic target to counteract the early event of ADM, with the potential to stall the initiation and progression of pancreatic carcinogenesis. Copyright


Molecular Pharmacology | 2018

Inhibition of Class I Histone Deacetylases Abrogates Tumor Growth Factor β Expression and Development of Fibrosis during Chronic Pancreatitis

Marta Bombardo; Rong Chen; Ermanno Malagola; Enrica Saponara; Andrew P. Hills; Rolf Graf; Sabrina Sonda

Pancreatic fibrosis is the hallmark of chronic pancreatitis, a highly debilitating disease for which there is currently no cure. The key event at the basis of pancreatic fibrosis is the deposition of extracellular matrix proteins by activated pancreatic stellate cells (PSCs). Transforming growth factor β (TGFβ) is a potent profibrotic factor in the pancreas as it promotes the activation of PSC; thus, pharmacologic interventions that effectively reduce TGFβ expression harbor considerable therapeutic potential in the treatment of chronic pancreatitis. In this study, we investigated whether TGFβ expression is reduced by pharmacologic inhibition of the epigenetic modifiers histone deacetylases (HDACs). To address this aim, chronic pancreatitis was induced in C57BL/6 mice with serial injections of cerulein, and the selective class 1 HDAC inhibitor MS-275 was administered in vivo in a preventive and therapeutic manner. Both MS-275 regimens potently reduced deposition of extracellular matrix and development of fibrosis in the pancreas after 4 weeks of chronic pancreatitis. Reduced pancreatic fibrosis was concomitant with lower expression of pancreatic TGFβ and consequent reduced PSC activation. In search of the cell types targeted by the inhibitor, we found that MS-275 treatment abrogated the expression of TGFβ in acinar cells stimulated by cerulein treatment. Our study demonstrates that MS-275 is an effective antifibrotic agent in the context of experimental chronic pancreatitis and thus may constitute a valid therapeutic intervention for this severe disease.

Collaboration


Dive into the Enrica Saponara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge