Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrica Uggetti is active.

Publication


Featured researches published by Enrica Uggetti.


Bioresource Technology | 2014

Pretreatment of microalgae to improve biogas production : A review

Fabiana Passos; Enrica Uggetti; Hélène Carrère; Ivet Ferrer

Microalgae have been intensively studied as a source of biomass for replacing conventional fossil fuels in the last decade. The optimization of biomass production, harvesting and downstream processing is necessary for enabling its full-scale application. Regarding biofuels, biogas production is limited by the characteristics of microalgae, in particular the complex cell wall structure of most algae species. Therefore, pretreatment methods have been investigated for microalgae cell wall disruption and biomass solubilization before undergoing anaerobic digestion. This paper summarises the state of the art of different pretreatment techniques used for improving microalgae anaerobic biodegradability. Pretreatments were divided into 4 categories: (i) thermal; (ii) mechanical; (iii) chemical and (iv) biological methods. According to experimental results, all of them are effective at increasing biomass solubilization and methane yield, pretreatment effect being species dependent. Pilot-scale research is still missing and would help evaluating the feasibility of full-scale implementation.


Bioresource Technology | 2010

Sludge treatment wetlands: a review on the state of the art

Enrica Uggetti; Ivet Ferrer; Esther Llorens; Joan García

Sludge management has become a key issue in wastewater treatment, representing some 20-60% of the operational costs of conventional wastewater treatment plants. The high water content of the sludge results in large daily flow rates to be handled and treated. Thus, the search for methods to improve sludge volume reduction continues to be of major interest. The technology known as sludge treatment wetlands has been used for sludge dewatering since the late 1980s. Major advantages include its low energy requirements, reduced operating and maintenance costs, and a reasonable integration in the environment. However, the number of plants in operation is still low in comparison with conventional technologies. This study represents a review of the state of the art of sludge treatment wetlands. The main characteristics and operational aspects of the technology are described, including a summary of the main results reported in the literature. Finally, the efficiency of sludge treatment wetlands versus conventional treatments is compared.


Bioresource Technology | 2014

Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity

Enrica Uggetti; Bruno Sialve; Eric Latrille; Jean Phillipe Steyer

In spite of the increasing interest received by microalgae as potential alternatives for biofuel production, the technology is still not industrially viable. The utilization of digestate as carbon and nutrients source can enhance microalgal growth reducing costs and environmental impacts. This work assesses microalgal growth utilizing the liquid phase of anaerobic digestate effluent as substrate. The effect of inoculum/substrate ratio on microalgal growth was studied in a laboratory batch experiment conduced in 0.5L flasks. Results suggested that digestate may be an effective substrate for microalgal growth promoting biomass production up to 2.6 gTSS/L. Microalgal growth rate was negatively affected by a self-shading phenomenon, while biomass production was positively correlated with the inoculum and substrate concentrations. Thus, the increasing of both digestate and microalgal initial concentration may reduce the initial growth rate (μ from 0.9 to 0.04 d(-1)) but significantly enhances biomass production (from 0.1 to 2.6 gTSS/L).


Water Research | 2011

Technical, economic and environmental assessment of sludge treatment wetlands

Enrica Uggetti; Ivet Ferrer; Jordi Molist; Joan García

Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI(24h) between 1.1 and 1.4 gO(2)/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities.


Bioresource Technology | 2009

Sludge dewatering and stabilization in drying reed beds: Characterization of three full-scale systems in Catalonia, Spain

Enrica Uggetti; Esther Llorens; Anna Pedescoll; Ivet Ferrer; Roger Castellnou; Joan García

Optimization of sludge management can help reducing sludge handling costs in wastewater treatment plants. Sludge drying reed beds appear as a new and alternative technology which has low energy requirements, reduced operating and maintenance costs, and causes little environmental impact. The objective of this work was to evaluate the efficiency of three full-scale drying reed beds in terms of sludge dewatering, stabilization and hygienisation. Samples of influent sludge and sludge accumulated in the reed beds were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand, Biochemical Oxygen Demand, nutrients (Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)), heavy metals and faecal bacteria indicators (Escherichiacoli and Salmonella spp.). Lixiviate samples were also collected. There was a systematic increase in the TS concentration from 1-3% in the influent to 20-30% in the beds, which fits in the range obtained with conventional dewatering technologies. Progressive organic matter removal and sludge stabilization in the beds was also observed (VS concentration decreased from 52-67% TS in the influent to 31-49% TS in the beds). Concentration of nutrients of the sludge accumulated in the beds was quite low (TKN 2-7% TS and TP 0.04-0.7% TS), and heavy metals remained below law threshold concentrations. Salmonella spp. was not detected in any of the samples, while E. coli concentration was generally lower than 460MPN/g in the sludge accumulated in the beds. The studied systems demonstrated a good efficiency for sludge dewatering and stabilization in the context of small remote wastewater treatment plants.


Water Research | 2012

Quantification of greenhouse gas emissions from sludge treatment wetlands

Enrica Uggetti; Joan García; Saara Lind; Pertti J. Martikainen; Ivet Ferrer

Constructed wetlands are nowadays successfully employed as an alternative technology for wastewater and sewage sludge treatment. In these systems organic matter and nutrients are transformed and removed by a variety of microbial reaction and gaseous compounds such as methane (CH(4)) and nitrous oxide (N(2)O) may be released to the atmosphere. The aim of this work is to introduce a method to determine greenhouse gas emissions from sludge treatment wetlands (STW) and use the method in a full-scale system. Sampling and analysing techniques used to determine greenhouse gas emissions from croplands and natural wetlands were successfully adapted to the quantification of CH(4) and N(2)O emissions from an STW. Gas emissions were measured using the static chamber technique in 9 points of the STW during 13 days. The spatial variation in the emission along the wetland did not follow some specific pattern found for the temporal variation in the fluxes. Emissions ranged from 10 to 5400 mg CH(4)/m(2)d and from 20 to 950 mgN(2)O/m(2)d, depending on the feeding events. The comparison between the CH(4) and N(2)O emissions of different sludge management options shows that STW have the lowest atmospheric impact in terms of CO(2) equivalent emissions (Global warming potential with time horizon of 100 years): 17 kg CO(2) eq/PE y for STW, 36 kg CO(2) eq/PE y for centrifuge and 162 kg CO(2) eq/PE y for untreated sludge transport, PE means Population Equivalent.


Journal of Hazardous Materials | 2016

Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study

Víctor Matamoros; Enrica Uggetti; Joan García; Josep M. Bayona

Aerated batch reactors (2.5L) fed either with urban or synthetic wastewater were inoculated with microalgae (dominated by Chlorella sp. and Scenedesmus sp.) to remove caffeine, ibuprofen, galaxolide, tributyl phosphate, 4-octylphenol, tris(2-chloroethyl) phosphate and carbamazepine for 10 incubation days. Non-aerated and darkness reactors were used as controls. Microalgae grew at a rate of 0.25 d(-1) with the complete removal of N-NH4 during the course of the experiment. After 10 incubation days, up to 99% of the microcontaminants with a Henrys law constant higher than 3 10(-1) Pa m(3) mol(-1) (i.e., 4-octylphenol, galaxolide, and tributyl phosphate) were removed by volatilization due to the effect of air stripping. Whereas biodegradation was effective for removing ibuprofen and caffeine, carbamazepine and tris(2-chloroethyl) phosphate behaved as recalcitrant compounds. The use of microalgae was proved to be relevant for increasing the biodegradation removal efficiency of ibuprofen by 40% and reducing the lag phase of caffeine by 3 days. Moreover, the enantioselective biodegradation of S-ibuprofen suggested a biotic prevalent removal process, which was supported by the identification of carboxy-ibuprofen and hydroxy-ibuprofen. The results from microalgae reactors fed with synthetic wastewater showed no clear evidences of microalgae uptake of any of the studied microcontaminants.


Science of The Total Environment | 2016

Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland

Enrica Uggetti; Theodore Hughes-Riley; Robert H. Morris; Michael Newton; Christophe L. Trabi; Patrick Hawes; Jaume Puigagut; Joan García

Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.


Bioresource Technology | 2015

Influence of starch on microalgal biomass recovery, settleability and biogas production

Raquel Gutiérrez; Ivet Ferrer; Joan García; Enrica Uggetti

In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass.


Science of The Total Environment | 2017

Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment

Dulce María Arias; Enrica Uggetti; María Jesús García-Galán; Joan García

The main objective of this study was to select and grow wastewater-borne cyanobacteria in a closed photobioreactor (PBR) inoculated with a mixed consortium of microalgae. The 30L PBR was fed with a mixture of urban secondary effluent and digestate, and operated in semi-continuous mode. Based on the nutrients variation of the influent, three different periods were distinguished during one year of operation. Results showed that total inorganic nitrogen (TIN), inorganic phosphorus concentration (PO43-), phosphorus volumetric load (LV-P) and carbon limited/non-limited conditions leaded to different species composition, nutrients removal and biomass production in the culture. High TIN/PO43- concentrations in the influent (36mg N L-1/3mg P L-1), carbon limitation and an average LV-P of 0.35mg P L-1d-1 were negatively related to cyanobacteria dominance and nutrients removal. On the contrary, cyanobacteria predominance over green algae and the highest microbial biomass production (averaging 0.084g Volatile Suspended Solids (VSS) L-1d-1) were reached under TIN/PO43- concentrations of 21mg N L-1/2mg P L-1, no carbon limitation and an average LV-P of 0.23mg P-PO43- L-1d-1. However, although cyanobacteria predominance was also favored with a LV-P 0.15mg L-1d-1, biomass production was negatively affected due to a P limitation in the culture, resulting in a biomass production of 0.0.39g VSS L-1d-1. This study shows that the dominance of cyanobacteria in a microalgal cyanobacterial community in an agitated PBR using wastewater as nutrient source can be obtained and maintained for 234days. These data can also be applied in future biotechnology applications to optimize and enhance the production of added value products by cyanobacteria in wastewater treatment systems.

Collaboration


Dive into the Enrica Uggetti's collaboration.

Top Co-Authors

Avatar

Joan García

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Ivet Ferrer

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

María Jesús García-Galán

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Dulce María Arias

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Fabiana Passos

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Raquel Gutiérrez

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Ivet Ferrer Martí

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Jaume Puigagut

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Marianna Garfí

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Michael Newton

Nottingham Trent University

View shared research outputs
Researchain Logo
Decentralizing Knowledge