Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Amico is active.

Publication


Featured researches published by Enrico Amico.


PLOS ONE | 2014

Posterior Cingulate Cortex-Related Co-Activation Patterns: A Resting State fMRI Study in Propofol-Induced Loss of Consciousness

Enrico Amico; Francisco Gómez; Carol Di Perri; Audrey Vanhaudenhuyse; Damien Lesenfants; Pierre Boveroux; Vincent Bonhomme; Jean-François Brichant; Daniele Marinazzo; Steven Laureys

Background Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. Methods Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC) at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation). Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8), to obtain 8 different PCC co-activation patterns (CAPs) for each level of consciousness. Results The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex), some others new (e.g., reduced co-activation in motor cortex and visual area). Conclusion In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local functional changes in the brain associated to propofol-induced modulation of consciousness.


Human Molecular Genetics | 2014

FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease

Alba Di Pardo; Enrico Amico; Mariagrazia Favellato; Roberta Castrataro; Sergio Fucile; Ferdinando Squitieri; Vittorio Maglione

Huntington disease (HD) is a genetic neurodegenerative disorder for which there is currently no cure and no way to stop or even slow the brain changes it causes. In the present study, we aimed to investigate whether FTY720, the first approved oral therapy for multiple sclerosis, may be effective in HD models and eventually constitute an alternative therapeutic approach for the treatment of the disease. Here, we utilized preclinical target validation paradigms and examined the in vivo efficacy of chronic administration of FTY720 in R6/2 HD mouse model. Our findings indicate that FTY720 improved motor function, prolonged survival and reduced brain atrophy in R6/2 mice. The beneficial effect of FTY720 administration was associated with a significant strengthening of neuronal activity and connectivity and, with reduction of mutant huntingtin aggregates, and it was also paralleled by increased phosphorylation of mutant huntingtin at serine 13/16 residues that are predicted to attenuate protein toxicity.


Journal of the Royal Society Interface | 2016

Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics.

Enzo Tagliazucchi; Dante R. Chialvo; Michael Siniatchkin; Enrico Amico; Jean-François Brichant; Vincent Bonhomme; Quentin Noirhomme; Helmut Laufs; Steven Laureys

Loss of cortical integration and changes in the dynamics of electrophysiological brain signals characterize the transition from wakefulness towards unconsciousness. In this study, we arrive at a basic model explaining these observations based on the theory of phase transitions in complex systems. We studied the link between spatial and temporal correlations of large-scale brain activity recorded with functional magnetic resonance imaging during wakefulness, propofol-induced sedation and loss of consciousness and during the subsequent recovery. We observed that during unconsciousness activity in frontothalamic regions exhibited a reduction of long-range temporal correlations and a departure of functional connectivity from anatomical constraints. A model of a system exhibiting a phase transition reproduced our findings, as well as the diminished sensitivity of the cortex to external perturbations during unconsciousness. This framework unifies different observations about brain activity during unconsciousness and predicts that the principles we identified are universal and independent from its causes.


Lancet Neurology | 2016

Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study

Carol Di Perri; Mohamed Ali Bahri; Enrico Amico; Aurore Thibaut; Lizette Heine; Georgios Antonopoulos; Vanessa Charland-Verville; Sarah Wannez; Francisco Gómez; Roland Hustinx; Luaba Tshibanda; Athena Demertzi; Andrea Soddu; Steven Laureys

BACKGROUND Between pathologically impaired consciousness and normal consciousness exists a scarcely researched transition zone, referred to as emergence from minimally conscious state, in which patients regain the capacity for functional communication, object use, or both. We investigated neural correlates of consciousness in these patients compared with patients with disorders of consciousness and healthy controls, by multimodal imaging. METHODS In this cross-sectional, multimodal imaging study, patients with unresponsive wakefulness syndrome, patients in a minimally conscious state, and patients who had emerged from a minimally conscious state, diagnosed with the Coma Recovery Scale-Revised, were recruited from the neurology department of the Centre Hospitalier Universitaire de Liège, Belgium. Key exclusion criteria were neuroimaging examination in an acute state, sedation or anaesthesia during scanning, large focal brain damage, motion parameters of more than 3 mm in translation and 3° in rotation, and suboptimal segmentation and normalisation. We acquired resting state functional and structural MRI data and (18)F-fluorodeoxyglucose (FDG) PET data; we used seed-based functional MRI (fMRI) analysis to investigate positive default mode network connectivity (within-network correlations) and negative default mode network connectivity (between-network anticorrelations). We correlated FDG-PET brain metabolism with fMRI connectivity. We used voxel-based morphometry to test the effect of anatomical deformations on functional connectivity. FINDINGS We recruited a convenience sample of 58 patients (21 [36%] with unresponsive wakefulness syndrome, 24 [41%] in a minimally conscious state, and 13 [22%] who had emerged from a minimally conscious state) and 35 healthy controls between Oct 1, 2009, and Oct 31, 2014. We detected consciousness-level-dependent increases (from unresponsive wakefulness syndrome, minimally conscious state, emergence from minimally conscious state, to healthy controls) for positive and negative default mode network connectivity, brain metabolism, and grey matter volume (p<0·05 false discovery rate corrected for multiple comparisons). Positive default mode network connectivity differed between patients and controls but not among patient groups (F test p<0·0001). Negative default mode network connectivity was only detected in healthy controls and in those who had emerged from a minimally conscious state; patients with unresponsive wakefulness syndrome or in a minimally conscious state showed pathological between-network positive connectivity (hyperconnectivity; F test p<0·0001). Brain metabolism correlated with positive default mode network connectivity (Spearmans r=0·50 [95% CI 0·26 to 0·61]; p<0·0001) and negative default mode network connectivity (Spearmans r=-0·52 [-0·35 to -0·67); p<0·0001). Grey matter volume did not differ between the studied groups (F test p=0·06). INTERPRETATION Partial preservation of between-network anticorrelations, which are seemingly of neuronal origin and cannot be solely explained by morphological deformations, characterise patients who have emerged from a minimally conscious state. Conversely, patients with disorders of consciousness show pathological between-network correlations. Apart from a deeper understanding of the neural correlates of consciousness, these findings have clinical implications and might be particularly relevant for outcome prediction and could inspire new therapeutic options. FUNDING Belgian National Funds for Scientific Research (FNRS), European Commission, Natural Sciences and Engineering Research Council of Canada, James McDonnell Foundation, European Space Agency, Mind Science Foundation, French Speaking Community Concerted Research Action, Fondazione Europea di Ricerca Biomedica, University and University Hospital of Liège (Liège, Belgium), and University of Western Ontario (London, ON, Canada).


Brain Structure & Function | 2016

Cortical reorganization in an astronaut's brain after long-duration spaceflight

Athena Demertzi; Angelique Van Ombergen; E. S. Tomilovskaya; Ben Jeurissen; Ekaterina Pechenkova; Carol Di Perri; Liudmila Litvinova; Enrico Amico; Alena Rumshiskaya; I. V. Rukavishnikov; Jan Sijbers; Valentin Sinitsyn; I. B. Kozlovskaya; Stefan Sunaert; Paul M. Parizel; Paul Van de Heyning; Steven Laureys; Floris L. Wuyts

To date, hampered physiological function after exposure to microgravity has been primarily attributed to deprived peripheral neuro-sensory systems. For the first time, this study elucidates alterations in human brain function after long-duration spaceflight. More specifically, we found significant differences in resting-state functional connectivity between motor cortex and cerebellum, as well as changes within the default mode network. In addition, the cosmonaut showed changes in the supplementary motor areas during a motor imagery task. These results highlight the underlying neural basis for the observed physiological deconditioning due to spaceflight and are relevant for future interplanetary missions and vestibular patients.To date, hampered physiological function after exposure to microgravity has been primarily attributed to deprived peripheral neuro-sensory systems. For the first time, this study elucidates alterations in human brain function after long-duration spaceflight. More specifically, we found significant differences in resting-state functional connectivity between motor cortex and cerebellum, as well as changes within the default mode network. In addition, the cosmonaut showed changes in the supplementary motor areas during a motor imagery task. These results highlight the underlying neural basis for the observed physiological deconditioning due to spaceflight and are relevant for future interplanetary missions and vestibular patients.


Journal of Cellular and Molecular Medicine | 2015

Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model

Ferdinando Squitieri; Alba Di Pardo; Mariagrazia Favellato; Enrico Amico; Vittorio Maglione; Luigi Frati

Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD. The therapeutic effect of pridopidine in patients with HD has been determined in two double‐blind randomized clinical trials, however, whether pridopidine exerts neuroprotection remains to be addressed. The main goal of this study was to define the potential neuroprotective effect of pridopidine, in HD in vivo and in vitro models, thus providing evidence that might support a potential disease‐modifying action of the drug and possibly clarifying other aspects of pridopidine mode‐of‐action. Our data corroborated the hypothesis of neuroprotective action of pridopidine in HD experimental models. Administration of pridopidine protected cells from apoptosis, and resulted in highly improved motor performance in R6/2 mice. The anti‐apoptotic effect observed in the in vitro system highlighted neuroprotective properties of the drug, and advanced the idea of sigma‐1‐receptor as an additional molecular target implicated in the mechanism of action of pridopidine. Coherent with protective effects, pridopidine‐mediated beneficial effects in R6/2 mice were associated with an increased expression of pro‐survival and neurostimulatory molecules, such as brain derived neurotrophic factor and DARPP32, and with a reduction in the size of mHtt aggregates in striatal tissues. Taken together, these findings support the theory of pridopidine as molecule with disease‐modifying properties in HD and advance the idea of a valuable therapeutic strategy for effectively treating the disease.


Human Brain Mapping | 2016

Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET.

Jitka Annen; Lizette Heine; Erik Ziegler; Gianluca Frasso; Mohamed Ali Bahri; C. Di Perri; Johan Stender; Charlotte Martial; Sarah Wannez; K. D'ostilio; Enrico Amico; Georgios Antonopoulos; Claire Bernard; F. Tshibanda; Roland Hustinx; Steven Laureys

A vast body of literature exists showing functional and structural dysfunction within the brains of patients with disorders of consciousness. However, the function (fluorodeoxyglucose FDG‐PET metabolism)–structure (MRI‐diffusion‐weighted images; DWI) relationship and how it is affected in severely brain injured patients remains ill‐defined. FDG‐PET and MRI‐DWI in 25 severely brain injured patients (19 Disorders of Consciousness of which 7 unresponsive wakefulness syndrome, 12 minimally conscious; 6 emergence from minimally conscious state) and 25 healthy control subjects were acquired here. Default mode network (DMN) function–structure connectivity was assessed by fractional anisotropy (FA) and metabolic standardized uptake value (SUV). As expected, a profound decline in regional metabolism and white matter integrity was found in patients as compared with healthy subjects. Furthermore, a function–structure relationship was present in brain‐damaged patients between functional metabolism of inferior‐parietal, precuneus, and frontal regions and structural integrity of the frontal‐inferiorparietal, precuneus‐inferiorparietal, thalamo‐inferioparietal, and thalamofrontal tracts. When focusing on patients, a stronger relationship between structural integrity of thalamo‐inferiorparietal tracts and thalamic metabolism in patients who have emerged from the minimally conscious state as compared with patients with disorders of consciousness was found. The latter finding was in line with the mesocircuit hypothesis for the emergence of consciousness. The findings showed a positive function–structure relationship within most regions of the DMN. Hum Brain Mapp 37:3707–3720, 2016.


PLOS ONE | 2014

Nitric oxide dysregulation in platelets from patients with advanced Huntington disease.

Albino Carrizzo; Alba Di Pardo; Vittorio Maglione; Antonio Damato; Enrico Amico; Luigi Formisano; Carmine Vecchione; Ferdinando Squitieri

Nitric oxide (NO) is a biologically active inorganic molecule involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission and neuromodulation. In the present study, for the first time, we investigated the modulation of NO signaling in platelets of HD patients. We recruited 55 patients with manifest HD and 28 gender- and age-matched healthy controls. Our data demonstrated that NO-mediated vasorelaxation, when evoked by supernatant from insulin-stimulated HD platelets, gradually worsens along disease course. The defective vasorelaxation seems to stem from a faulty release of NO from platelets of HD patients and, it is associated with impairment of eNOS phosphorylation (Ser1177) and activity. This study provides important insights about NO metabolism in HD and raises the hypothesis that the decrease of NO in platelets of HD individuals could be a good tool for monitoring advanced stages of the disease.


Scientific Reports | 2017

Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease.

Alba Di Pardo; Enrico Amico; Abdul W. Basit; Andrea Armirotti; Piyush Joshi; Diana M. Neely; Romina Vuono; Salvatore Castaldo; Anna F. Digilio; Francesco Scalabrì; Giuseppe Pepe; Francesca Elifani; Michele Madonna; Se Kyoo Jeong; Bu-Mahn Park; Maurizio D’Esposito; Aaron B. Bowman; Roger A. Barker; Vittorio Maglione

Huntington’s disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition.


Frontiers in Neuroscience | 2016

Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models

Alba Di Pardo; Enrico Amico; Vittorio Maglione

Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease.

Collaboration


Dive into the Enrico Amico's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferdinando Squitieri

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge