Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Calzia is active.

Publication


Featured researches published by Enrico Calzia.


Critical Care Medicine | 2007

Glucose metabolism and catecholamines.

Eberhard Barth; Gerd Albuszies; Katja Baumgart; Martin Matejovic; Ulrich Wachter; Josef Vogt; Peter Radermacher; Enrico Calzia

Until now, catecholamines were the drugs of choice to treat hypotension during shock states. Catecholamines, however, also have marked metabolic effects, particularly on glucose metabolism, and the degree of this metabolic response is directly related to the &bgr;2-adrenoceptor activity of the individual compound used. Under physiologic conditions, infusing catecholamine is associated with enhanced rates of aerobic glycolysis (resulting in adenosine triphosphate production), glucose release (both from glycogenolysis and gluconeogenesis), and inhibition of insulin-mediated glycogenesis. Consequently, hyperglycemia and hyperlactatemia are the hallmarks of this metabolic response. Under pathophysiologic conditions, the metabolic effects of cate-cholamines are less predictable because of changes in receptor affinity and density and in drug kinetics and the metabolic capacity of the major gluconeogenic organs, both resulting from the disease per se and the ongoing treatment. It is also well-established that shock states are characterized by a hypermetabolic condition with insulin resistance and increased oxygen demands, which coincide with both compromised tissue microcirculatory perfusion and mitochondrial dysfunction. This, in turn, causes impaired glucose utilization and may lead to inadequate glucose supply and, ultimately, metabolic failure. Based on the landmark studies on intensive insulin use, a crucial role is currently attributed to glucose homeostasis. This article reviews the effects of the various catecholamines on glucose utilization, both under physiologic conditions, as well as during shock states. Because, to date (to our knowledge), no patient data are available, results from relevant animal experiments are discussed. In addition, potential strategies are outlined to influence the catecholamine-induced effects on glucose homeostasis.


Critical Care | 2009

Bench-to-bedside review: Hydrogen sulfide – the third gaseous transmitter: applications for critical care

Florian Wagner; Enrico Calzia; Peter Radermacher; Csaba Szabó

Hydrogen sulfide (H2S), a gas with the characteristic odor of rotten eggs, is known for its toxicity and as an environmental hazard, inhibition of mitochondrial respiration resulting from blockade of cytochrome c oxidase being the main toxic mechanism. Recently, however, H2S has been recognized as a signaling molecule of the cardiovascular, inflammatory and nervous systems, and therefore, alongside nitric oxide and carbon monoxide, is referred to as the third endogenous gaseous transmitter. Inhalation of gaseous H2S as well as administration of inhibitors of its endogenous production and compounds that donate H2S have been studied in various models of shock. Based on the concept that multiorgan failure secondary to shock, inflammation and sepsis may represent an adaptive hypometabolic reponse to preserve ATP homoeostasis, particular interest has focused on the induction of a hibernation-like suspended animation with H2S. It must be underscored that currently only a limited number of data are available from clinically relevant large animal models. Moreover, several crucial issues warrant further investigation before the clinical application of this concept. First, the impact of hypothermia for any H2S-related organ protection remains a matter of debate. Second, similar to the friend and foe character of nitric oxide, no definitive conclusions can be made as to whether H2S exerts proinflammatory or anti-inflammatory properties. Finally, in addition to the question of dosing and timing (for example, bolus administration versus continuous intravenous infusion), the preferred route of H2S administration remains to be settled – that is, inhaling gaseous H2S versus intra-venous administration of injectable H2S preparations or H2S donors. To date, therefore, while H2S-induced suspended animation in humans may still be referred to as science fiction, there is ample promising preclinical data that this approach is a fascinating new therapeutic perspective for the management of shock states that merits further investigation.


Critical Care Medicine | 2008

Effects of ventilation with 100% oxygen during early hyperdynamic porcine fecal peritonitis.

Eberhard Barth; Gabriele Bassi; Dirk M. Maybauer; Florian Simon; Michael Gröger; Sukru Oter; Günter Speit; Cuong D. Nguyen; Cornelia Hasel; Peter Møller; Ulrich Wachter; Josef Vogt; Martin Matejovic; Peter Radermacher; Enrico Calzia

Objective: Early goal-directed therapy aims at balancing tissue oxygen delivery and demand. Hyperoxia (i.e., pure oxygen breathing) has not been studied in this context, since sepsis increases oxygen radical production, which is believed to be directly related to the oxygen tension. On the other hand, oxygen breathing improved survival in various shock models. Therefore, we hypothesized that hyperoxia may be beneficial during early septic shock. Design: Laboratory animal experiments. Setting: Animal research laboratory at university medical school. Subjects: Twenty domestic pigs of either gender. Interventions: After induction of fecal peritonitis, anesthetized and instrumented pigs were ventilated with either 100% oxygen or supplemental oxygen as needed to maintain arterial hemoglobin oxygen saturation ≥90%. Normotensive and hyperdynamic hemodynamics were achieved using hydroxyethyl starch and norepinephrine infusion. Measurements and Main Results: Before and at 12, 18, and 24 hrs of peritonitis, we measured lung compliance; systemic, pulmonary, and hepatosplanchnic hemodynamics; gas exchange; acid-base status; blood isoprostanes; nitrates; DNA strand breaks; and organ function. Gluconeogenesis and glucose oxidation were calculated from blood isotope and expiratory 13CO2 enrichments during continuous intravenous 1,2,3,4,5,6-13C6-glucose. Apoptosis in lung and liver was assessed postmortem (TUNEL staining). Hyperoxia did not affect lung mechanics or gas exchange but redistributed cardiac output to the hepatosplanchnic region, attenuated regional venous metabolic acidosis, increased glucose oxidation, improved renal function, and markedly reduced the apoptotic death rate in liver and lung. Conclusions: During early hyperdynamic porcine septic shock, 100% oxygen improved organ function and attenuated tissue apoptosis without affecting lung function and oxidative or nitrosative stress. Therefore, it might be considered as an additional measure in the first phase of early goal-directed therapy.


Critical Care Medicine | 2010

Cardiac and metabolic effects of hypothermia and inhaled hydrogen sulfide in anesthetized and ventilated mice.

Katja Baumgart; Florian Wagner; Michael Gröger; Sandra Weber; Eberhard Barth; Josef Vogt; Ulrich Wachter; Markus Huber-Lang; Markus W. Knöferl; Gerd Albuszies; Michael K. Georgieff; Csaba Szabó; Enrico Calzia; Peter Radermacher; Vladislava Simkova

Objective: To test the hypothesis whether inhaled hydrogen sulfide amplifies the effects of deliberate hypothermia during anesthesia and mechanical ventilation as hypothermia is used to provide organ protection after brain trauma or circulatory arrest. Awake mice inhaling hydrogen sulfide exhibit reduced energy expenditure, hypothermia, and bradycardia despite unchanged systolic heart function. In rodents, anesthesia alone causes decreased metabolic rate and thus hypothermia and bradycardia. Design: Prospective, controlled, randomized study. Setting: University animal research laboratory. Subjects: Male C57/B6 mice. Interventions: After surgical instrumentation (central venous, left ventricular pressure-conductance catheters, ultrasound flow probes on the portal vein and superior mesenteric artery), normo- or hypothermic animals (core temperature = 38°C and 27°C) received either 100 ppm hydrogen sulfide or vehicle over 5 hrs (3 hrs hydrogen sulfide during normothermia). Measurements and Main Results: During normothermia, hydrogen sulfide had no hemodynamic or metabolic effect. With or without hydrogen sulfide, hypothermia decreased blood pressure, heart rate, and cardiac output, whereas stroke volume, ejection fraction, and end-diastolic pressure remained unaffected. Myocardial and hepatic oxidative deoxyribonucleic acid damage (comet assay) and endogenous glucose production (rate of appearance of 1,2,3,4,5,6-13C6-glucose) were similar in all groups. Hypothermia comparably decreased CO2 production with or without inhaled hydrogen sulfide. During hypothermia, inhaled hydrogen sulfide increased the glucose oxidation rate (derived from the expiratory 13CO2/12CO2 ratio). This shift toward preferential carbohydrate utilization coincided with a significantly attenuated responsiveness of hepatic mitochondrial respiration to stimulation with exogenous cytochrome-c-oxidase (high-resolution respirometry). Conclusions: In anesthetized and mechanically ventilated mice, inhaled hydrogen sulfide did not amplify the systemic hemodynamic and cardiac effects of hypothermia alone. The increased aerobic glucose oxidation together with the reduced responsiveness of cellular respiration to exogenous cytochrome-c stimulation suggest that, during hypothermia, inhaled hydrogen sulfide improved the yield of mitochondrial respiration, possibly via the maintenance of mitochondrial integrity. Hence, inhaled hydrogen sulfide may offer metabolic benefit during therapeutic hypothermia.


Shock | 2011

Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock.

Florian Wagner; Katja Wagner; Sandra Weber; Bettina Stahl; Markus W. Knöferl; Markus Huber-Lang; Daniel H. Seitz; Enrico Calzia; Uwe Senftleben; Florian Gebhard; Michael K. Georgieff; Peter Radermacher; Vladislava Hysa

Inhaling hydrogen sulfide (H2S) reduced energy expenditure resulting in hypothermia. Because the inflammatory effects of either hypothermia alone or H2S per se still are a matter of debate, we tested the hypothesis whether inhaled H2S amplifies the hypothermia-related modulation of the inflammatory response. Fifteen hours after cecal ligation and puncture or sham laparotomy, anesthetized and mechanically ventilated normothermic and hypothermic mice (core temperature kept at 38°C and 27°C, respectively) received either 100 ppm H2S or vehicle. In the sham-operated animals, inhaled H2S and hypothermia alone comparably reduced the plasma chemokine and IL-6 levels, but combining hypothermia and inhaled H2S had no additional effect. The lung tissue cytokine and chemokine patterns revealed a similar response. During sepsis, inhaled H2S reduced the blood cytokine concentrations only, without effects on the plasma chemokine or the lung tissue levels. Again, inhaled H2S had no major additional effect during hypothermia. With or without sepsis, inhaled H2S and hypothermia alone comparably reduced the lung tissue heme oxygenase 1 expression, whereas inhaled H2S had no additional effect during hypothermia. Lung tissue nuclear transcription factor &kgr;B activation was reduced by combining H2S with hypothermia in the sham-operated animals, whereas it was increased by inhaled H2S during sepsis. Hypothermia amplified this response. Hence, during anesthesia and mechanical ventilation, inhaled H2S exerted anti-inflammatory effects, which were, however, not amplified by adding deliberate hypothermia. Sepsis attenuated these anti-inflammatory effects of inhaled H2S, which were at least in part independent of the nuclear transcription factor &kgr;B pathway.


Shock | 2011

Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury.

Florian Simon; Angelika Scheuerle; Michael Gröger; Bettina Stahl; Ulrich Wachter; Josef Vogt; Günter Speit; Balázs Hauser; Peter Møller; Enrico Calzia; Csaba Szabó; Hubert Schelzig; Michael Georgieff; Peter Radermacher; Florian Wagner

In rodents, inhaled H2S and injection of H2S donors protected against kidney ischemia/reperfusion (I/R) injury. During porcine aortic occlusion, the H2S donor Na2S (sulfide) reduced energy expenditure and decreased the noradrenaline requirements needed to maintain hemodynamic targets during early reperfusion. Therefore, we tested the hypothesis whether sulfide pretreatment may also ameliorate organ function in porcine aortic occlusion-induced kidney I/R injury. Anesthetized, ventilated, and instrumented pigs randomly received either sulfide or vehicle and underwent 90 min of kidney ischemia using intraaortic balloon-occlusion, and 8 h of reperfusion. During reperfusion, noradrenaline was titrated to maintain blood pressure at baseline levels. Sulfide attenuated the fall in creatinine clearance and the rise in creatinine blood levels, whereas renal blood flow and fractional Na+ excretion were comparable. Sulfide also lowered the blood IL-6, IL-1&bgr;, and nitrite + nitrate concentrations, which coincided with reduced kidney oxidative DNA base damage and iNOS expression, and attenuated glomerular histological injury as assessed by the incidence of glomerular tubularization. While expression of heme oxygenase 1 and cleaved caspase 3 did not differ, sulfide reduced the expression Bcl-xL and increased the activation of nuclear transcription factor &kgr;B. During porcine aortic occlusion-induced kidney I/R injury, sulfide pretreatment attenuated tissue injury and organ dysfunction as a result of reduced inflammation and oxidative and nitrosative stress. The higher nuclear transcription factor &kgr;B activation was probably due to the drop in temperature.


British Journal of Pharmacology | 2014

Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II : Pathophysiological and therapeutic aspects

Katalin Módis; Eelke M. Bos; Enrico Calzia; Harry van Goor; Ciro Coletta; Andreas Papapetropoulos; Mark R. Hellmich; Peter Radermacher; Frédéric Bouillaud; Csaba Szabó

Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up‐regulate the H2S‐producing enzyme cystathionine β‐synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour‐cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S‐induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.


Critical Care | 2009

Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial

Florian Simon; Ricardo Giudici; Angelika Scheuerle; Michael Gröger; Josef Vogt; Ulrich Wachter; Franz Ploner; Michael K. Georgieff; Peter Møller; Regent Laporte; Peter Radermacher; Enrico Calzia; Balázs Hauser

IntroductionInfusing arginine vasopressin (AVP) in vasodilatory shock usually decreases cardiac output and thus systemic oxygen transport. It is still a matter of debate whether this vasoconstriction impedes visceral organ blood flow and thereby causes organ dysfunction and injury. Therefore, we tested the hypothesis whether low-dose AVP is safe with respect to liver, kidney, and heart function and organ injury during resuscitated septic shock.MethodsAfter intraperitoneal inoculation of autologous feces, 24 anesthetized, mechanically ventilated, and instrumented pigs were randomly assigned to noradrenaline alone (increments of 0.05 μg/kg/min until maximal heart rate of 160 beats/min; n = 12) or AVP (1 to 5 ng/kg/min; supplemented by noradrenaline if the maximal AVP dosage failed to maintain mean blood pressure; n = 12) to treat sepsis-associated hypotension. Parameters of systemic and regional hemodynamics (ultrasound flow probes on the portal vein and hepatic artery), oxygen transport, metabolism (endogenous glucose production and whole body glucose oxidation derived from blood glucose isotope and expiratory 13CO2/12CO2 enrichment during 1,2,3,4,5,6-13C6-glucose infusion), visceral organ function (blood transaminase activities, bilirubin and creatinine concentrations, creatinine clearance, fractional Na+ excretion), nitric oxide (exhaled NO and blood nitrate + nitrite levels) and cytokine production (interleukin-6 and tumor necrosis factor-α blood levels), and myocardial function (left ventricular dp/dtmax and dp/dtmin) and injury (troponin I blood levels) were measured before and 12, 18, and 24 hours after peritonitis induction. Immediate post mortem liver and kidney biopsies were analysed for histomorphology (hematoxylin eosin staining) and apoptosis (TUNEL staining).ResultsAVP decreased heart rate and cardiac output without otherwise affecting heart function and significantly decreased troponin I blood levels. AVP increased the rate of direct, aerobic glucose oxidation and reduced hyperlactatemia, which coincided with less severe kidney dysfunction and liver injury, attenuated systemic inflammation, and decreased kidney tubular apoptosis.ConclusionsDuring well-resuscitated septic shock low-dose AVP appears to be safe with respect to myocardial function and heart injury and reduces kidney and liver damage. It remains to be elucidated whether this is due to the treatment per se and/or to the decreased exogenous catecholamine requirements.


Critical Care Medicine | 2010

Hyperoxia may be beneficial

Enrico Calzia; Balász Hauser; Martin Matejovic; Costantino Ballestra; Peter Radermacher; Michael K. Georgieff

The current practice of mechanical ventilation comprises the use of the least inspiratory O2 fraction associated with an arterial O2 tension of 55 to 80 mm Hg or an arterial hemoglobin O2 saturation of 88% to 95%. Early goal-directed therapy for septic shock, however, attempts to balance O2 delivery and demand by optimizing cardiac function and hemoglobin concentration, without making use of hyperoxia. Clearly, it has been well-established for more than a century that long-term exposure to pure O2 results in pulmonary and, under hyperbaric conditions, central nervous O2 toxicity. Nevertheless, several arguments support the use of ventilation with 100% O2 as a supportive measure during the first 12 to 24 hrs of septic shock. In contrast to patients without lung disease undergoing anesthesia, ventilation with 100% O2 does not worsen intrapulmonary shunt under conditions of hyperinflammation, particularly when low tidal volume–high positive end-expiratory pressure ventilation is used. In healthy volunteers and experimental animals, exposure to hyperoxia may cause pulmonary inflammation, enhanced oxidative stress, and tissue apoptosis. This, however, requires long-term exposure or injurious tidal volumes. In contrast, within the timeframe of a perioperative administration, direct O2 toxicity only plays a negligible role. Pure O2 ventilation induces peripheral vasoconstriction and thus may counteract shock-induced hypotension and reduce vasopressor requirements. Furthermore, in experimental animals, a redistribution of cardiac output toward the kidney and the hepato-splanchnic organs was observed. Hyperoxia not only reverses the anesthesia-related impairment of the host defense but also is an antibiotic. In fact, perioperative hyperoxia significantly reduced wound infections, and this effect was directly related to the tissue O2 tension. Therefore, we advocate mechanical ventilation with 100% O2 during the first 12 to 24 hrs of septic shock. However, controlled clinical trials are mandatory to test the safety and efficacy of this approach.


Journal of Trauma-injury Infection and Critical Care | 2011

Cardiopulmonary, histologic, and inflammatory effects of intravenous Na2S after blunt chest trauma-induced lung contusion in mice.

Florian Wagner; Angelika Scheuerle; Sandra Weber; Bettina Stahl; Oscar McCook; Markus W. Knöferl; Markus Huber-Lang; Daniel H. Seitz; Jörg Thomas; Pierre Asfar; Csaba Szabó; Peter Möller; Florian Gebhard; Michael Georgieff; Enrico Calzia; Peter Radermacher; Katja Wagner

BACKGROUND When used as a pretreatment, hydrogen sulfide (H2S) either attenuated or aggravated lung injury. Therefore, we tested the hypothesis whether posttreatment intravenous Na2S (sulfide) may attenuate lung injury. METHODS After blast wave blunt chest trauma or sham procedure, anesthetized and instrumented mice received continuous intravenous sulfide or vehicle while being kept at 37°C or 32°C core temperature. After 4 hours of pressure-controlled, thoracopulmonary compliance-titrated, lung-protective mechanical ventilation, blood and tissue were harvested for cytokine concentrations, heme oxygenase-1, IκBα, Bcl-Xl, and pBad expression (western blotting), nuclear factor-κB activation (electrophoretic mobility shift assay), and activated caspase-3, cystathionine-β synthase and cystathionine-γ lyase (immunohistochemistry). RESULTS Hypothermia caused marked bradycardia and metabolic acidosis unaltered by sulfide. Chest trauma impaired thoracopulmonary compliance and arterial Po2, again without sulfide effect. Cytokine levels showed inconsistent response. Sulfide increased nuclear factor-κB activation during normothermia, but this effect was blunted during hypothermia. While histologic lung injury was variable, both sulfide and hypothermia attenuated the trauma-related increase in heme oxygenase-1 expression and activated caspase-3 staining, which coincided with increased Bad phosphorylation and Bcl-Xl expression. Sulfide and hypothermia also attenuated the trauma-induced cystathionine-β synthase and cystathionine-γ lyase expression. CONCLUSIONS Posttreatment sulfide infusion after blunt chest trauma did not affect the impaired lung mechanics and gas exchange but attenuated stress protein expression and apoptotic cell death. This protective effect was amplified by moderate hypothermia. The simultaneous reduction in cystathionine-β synthase and cystathionine-γ lyase expression supports the role of H2S-generating enzymes as an adaptive response during stress states.

Collaboration


Dive into the Enrico Calzia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Csaba Szabó

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge