Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Girardi is active.

Publication


Featured researches published by Enrico Girardi.


Nature Immunology | 2011

Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria

Yuki Kinjo; Petr A. Illarionov; José Luis Vela; Bo Pei; Enrico Girardi; Xiangming Li; Yali Li; Masakazu Imamura; Yukihiro Kaneko; Akiko Okawara; Yoshitsugu Miyazaki; Anaximandro Gómez-Velasco; Paul Rogers; Samira Dahesh; Satoshi Uchiyama; Archana Khurana; Kazuyoshi Kawahara; Hasan Yesilkaya; Peter W. Andrew; Chi-Huey Wong; Kazuyoshi Kawakami; Victor Nizet; Gurdyal S. Besra; Moriya Tsuji; Dirk M. Zajonc; Mitchell Kronenberg

Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.


PubMed | 2011

Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria.

Yuki Kinjo; Petr A. Illarionov; José Luis Vela; Bo Pei; Enrico Girardi; Xiangming Li; Yali Li; Masakazu Imamura; Yukihiro Kaneko; Akiko Okawara; Yoshitsugu Miyazaki; Anaximandro Gómez-Velasco; Paul Rogers; Samira Dahesh; Satoshi Uchiyama; Archana Khurana; Kazuyoshi Kawahara; Hasan Yesilkaya; Peter W. Andrew; Chi-Huey Wong; Kazuyoshi Kawakami; Nizet; Gurdyal S. Besra; Moriya Tsuji; Dirk M. Zajonc; Mitchell Kronenberg

Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.


Nature Immunology | 2012

Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens.

Enrico Girardi; Igor Maricic; Jing Wang; Thien-Thi Mac; Pooja Iyer; Vipin Kumar; Dirk M. Zajonc

Glycolipids presented by the major histocompatibility complex class I (MHC I) homolog CD1d are recognized by natural killer T (NKT) cells characterized by either a semi-invariant (type I or iNKT) or a relatively variable (type II) T cell receptor (TCR) repertoire. Here we describe the first structure of a type II NKT TCR complexed with CD1d-lysosulfatide (LSF). Both TCR α and β chains contacted the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, while the antigen was recognized exclusively with a single TCR chain, similar to the iNKT TCR. Type II NKT cells, therefore, recognize CD1d-sulfatide complexes with a distinct recognition mechanism characterized by features of both iNKT cells as well as conventional peptide-reactive T cells.Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.


The EMBO Journal | 2011

Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis

Sandrine Aspeslagh; Yali Li; Esther Dawen Yu; Nora Pauwels; Matthias Trappeniers; Enrico Girardi; Tine Decruy; Katrien Van Beneden; Koen Venken; Michael Drennan; Luc Leybaert; Jing Wang; Richard W. Franck; Serge Van Calenbergh; Dirk M. Zajonc; Dirk Elewaut

Invariant natural killer T (iNKT) cells are known to have marked immunomodulatory capacity due to their ability to produce copious amounts of effector cytokines. Here, we report the structure and function of a novel class of aromatic α‐galactosylceramide structurally related glycolipids with marked Th1 bias in both mice and men, leading to superior tumour protection in vivo. The strength of the Th1 response correlates well with enhanced lipid binding to CD1d as a result of an induced fit mechanism that binds the aromatic substitution as a third anchor, in addition to the two lipid chains. This induced fit is in contrast to another Th1‐biasing glycolipid, α‐C‐GalCer, whose CD1d binding follows a conventional key‐lock principle. These findings highlight the previously unexploited flexibility of CD1d in accommodating galactose‐modified glycolipids and broaden the range of glycolipids that can stimulate iNKT cells. We speculate that glycolipids can be designed that induce a similar fit, thereby leading to superior and more sustained iNKT cell responses in vivo.


Journal of Experimental Medicine | 2010

The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode

Yali Li; Enrico Girardi; Jing Wang; Esther Dawen Yu; Gavin F. Painter; Mitchell Kronenberg; Dirk M. Zajonc

The first crystal structures of iNKT cell TCRs bound to complexes of CD1d and microbe-derived glycolipids provide insight into the structural basis of iNKT cell microbial antigen recognition.


Journal of Immunology | 2011

Cutting Edge: Structural Basis for the Recognition of β-Linked Glycolipid Antigens by Invariant NKT Cells

Esther Dawen Yu; Enrico Girardi; Jing Wang; Dirk M. Zajonc

Invariant NKT (iNKT) cells expressing a semi-invariant Vα14 TCR recognize self and foreign lipid Ags when presented by the nonclassical MHCI homolog CD1d. Whereas the majority of known iNKT cell Ags are characterized by the presence of a single α-linked sugar, mammalian self Ags are β-linked glycosphingolipids, posing the interesting question of how the semi-invariant TCR can bind to such structurally distinct ligands. In this study, we show that the mouse iNKT TCR recognizes the complex β-linked Ag isoglobotrihexosylceramide (iGb3; Galα1-3-Galβ1-4-Glcβ1-1Cer) by forcing the proximal β-linked sugar of the trisaccharide head group to adopt the typical binding orientation of α-linked glycolipids. The squashed iGb3 orientation is stabilized by several interactions between the trisaccharide and CD1d residues. Finally, the formation of novel contacts between the proximal and second sugar of iGb3 and CDR2α residues of the TCR suggests an expanded recognition logic that can possibly distinguish foreign Ags from self Ags.


Immunological Reviews | 2012

Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells

Enrico Girardi; Dirk M. Zajonc

Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non‐classical CD1 family (CD1a–e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T‐cell receptors (TCRs) on the surface of T cells. In particular, most CD1d‐presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d‐mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex‐reactive TCRs.


PLOS Biology | 2011

Unique Interplay between Sugar and Lipid in Determining the Antigenic Potency of Bacterial Antigens for NKT Cells.

Enrico Girardi; Esther Dawen Yu; Yali Li; Norihito Tarumoto; Bo Pei; Jing Wang; Petr A. Illarionov; Yuki Kinjo; Mitchell Kronenberg; Dirk M. Zajonc

Structural and biophysical studies reveal the induced-fit mechanism underlying the stringent specificity of invariant natural killer T cells for unique glycolipid antigens from the pathogen Streptococcus pneumoniae.


Journal of Immunology | 2011

NKT Cell Ligand Recognition Logic: Molecular Basis for a Synaptic Duet and Transmission of Inflammatory Effectors

Sebastian Joyce; Enrico Girardi; Dirk M. Zajonc

NKT cells that express the semi-invariant TCR are innate-like lymphocytes whose functions are regulated by self and foreign glycolipid ligands presented by the Ag-presenting, MHC class I-like molecule CD1d. Activation of NKT cells in vivo results in rapid release of copious amounts of effector cytokines and chemokines with which they regulate innate and adaptive immune responses to pathogens, certain types of cancers, and self-antigens. The nature of CD1d-restricted ligands, the manner in which they are recognized, and the unique effector functions of NKT cells suggest an immunoregulatory role for this T cell subset. Their ability to respond fast and our ability to steer NKT cell cytokine response to altered lipid ligands make them an important target for vaccine design and immunotherapies against autoimmune diseases. This review summarizes our current understanding of CD1d-restricted ligand recognition by NKT cells and how these innate-like lymphocytes regulate inflammation.


Frontiers in Immunology | 2015

Recognition of Microbial Glycolipids by Natural Killer T Cells.

Dirk M. Zajonc; Enrico Girardi

T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell recognition of glycolipids, with an emphasis on microbial glycolipids.

Collaboration


Dive into the Enrico Girardi's collaboration.

Top Co-Authors

Avatar

Dirk M. Zajonc

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Esther Dawen Yu

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Mitchell Kronenberg

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Yali Li

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Archana Khurana

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

José Luis Vela

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yuki Kinjo

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge