Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Lugli is active.

Publication


Featured researches published by Enrico Lugli.


Nature Medicine | 2011

A human memory T cell subset with stem cell-like properties.

Luca Gattinoni; Enrico Lugli; Yun Ji; Zoltan Pos; Chrystal M. Paulos; Máire F. Quigley; Jorge Sánchez Almeida; Emma Gostick; Zhiya Yu; Carmine Carpenito; Ena Wang; David A. Price; Carl H. June; Francesco M. Marincola; Mario Roederer; Nicholas P. Restifo

Immunological memory is thought to depend on a stem cell–like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell–like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


European Journal of Immunology | 2013

The who's who of T-cell differentiation: Human memory T-cell subsets

Yolanda D. Mahnke; Tess M. Brodie; Federica Sallusto; Mario Roederer; Enrico Lugli

Following antigen encounter and subsequent resolution of the immune response, a single naïve T cell is able to generate multiple subsets of memory T cells with different phenotypic and functional properties and gene expression profiles. Single‐cell technologies, first and foremost flow cytometry, have revealed the complex heterogeneity of the memory T‐cell compartment and its organization into subsets. However, a consensus has still to be reached, both at the semantic (nomenclature) and phenotypic level, regarding the identification of these subsets. Here, we review recent developments in the characterization of the heterogeneity of the memory T‐cell compartment, and propose a unified classification of both human and nonhuman primate T cells on the basis of phenotypic traits and in vivo properties. Given that vaccine studies and adoptive cell transfer immunotherapy protocols are influenced by these recent findings, it is important to use uniform methods for identifying and discussing functionally distinct subsets of T cells.


Journal of Clinical Oncology | 2015

Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer

Kevin C. Conlon; Enrico Lugli; Hugh C. Welles; Steven A. Rosenberg; Antonio Tito Fojo; John C. Morris; Thomas A. Fleisher; Sigrid Dubois; Liyanage P. Perera; Donn M. Stewart; Carolyn K. Goldman; Bonita R. Bryant; Jean M. Decker; Jing Chen; Tat’Yana A. Worthy; William D. Figg; Cody J. Peer; Michael C. Sneller; H. Clifford Lane; Jason L. Yovandich; Stephen P. Creekmore; Mario Roederer; Thomas A. Waldmann

PURPOSEnInterleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy.nnnPATIENTS AND METHODSnWe performed a first in-human trial of Escherichia coli-produced rhIL-15. Bolus infusions of 3.0, 1.0, and 0.3 μg/kg per day of IL-15 were administered for 12 consecutive days to patients with metastatic malignant melanoma or metastatic renal cell cancer.nnnRESULTSnFlow cytometry of peripheral blood lymphocytes revealed dramatic efflux of NK and memory CD8 T cells from the circulating blood within minutes of IL-15 administration, followed by influx and hyperproliferation yielding 10-fold expansions of NK cells that ultimately returned to baseline. Up to 50-fold increases of serum levels of multiple inflammatory cytokines were observed. Dose-limiting toxicities observed in patients receiving 3.0 and 1.0 μg/kg per day were grade 3 hypotension, thrombocytopenia, and elevations of ALT and AST, resulting in 0.3 μg/kg per day being determined the maximum-tolerated dose. Indications of activity included clearance of lung lesions in two patients.nnnCONCLUSIONnIL-15 could be safely administered to patients with metastatic malignancy. IL-15 administration markedly altered homeostasis of lymphocyte subsets in blood, with NK cells and γδ cells most dramatically affected, followed by CD8 memory T cells. To reduce toxicity and increase efficacy, alternative dosing strategies have been initiated, including continuous intravenous infusions and subcutaneous IL-15 administration.


Journal of Clinical Investigation | 2013

Superior T memory stem cell persistence supports long-lived T cell memory

Enrico Lugli; Maria H. Dominguez; Luca Gattinoni; Pratip K. Chattopadhyay; Diane L. Bolton; Kaimei Song; Nichole R. Klatt; Jason M. Brenchley; Monica Vaccari; Emma Gostick; David A. Price; Thomas A. Waldmann; Nicholas P. Restifo; Genoveffa Franchini; Mario Roederer

Long-lived memory T cells are able to persist in the host in the absence of antigen; however, the mechanism by which they are maintained is not well understood. Recently, a subset of human T cells, stem cell memory T cells (TSCM cells), was shown to be self-renewing and multipotent, thereby providing a potential reservoir for T cell memory throughout life. However, their in vivo dynamics and homeostasis still remain to be defined due to the lack of suitable animal models. We identified T cells with a TSCM phenotype and stem cell-like properties in nonhuman primates. These cells were the least-differentiated memory subset, were functionally distinct from conventional memory cells, and served as precursors of central memory. Antigen-specific TSCM cells preferentially localized to LNs and were virtually absent from mucosal surfaces. They were generated in the acute phase of viral infection, preferentially survived in comparison with all other memory cells following elimination of antigen, and stably persisted for the long term. Thus, one mechanism for maintenance of long-term T cell memory derives from the unique homeostatic properties of TSCM cells. Vaccination strategies designed to elicit durable cellular immunity should target the generation of TSCM cells.


Cytometry Part A | 2010

Data Analysis in Flow Cytometry: The Future Just Started

Enrico Lugli; Mario Roederer; Andrea Cossarizza

In the last 10 years, a tremendous progress characterized flow cytometry in its different aspects. In particular, major advances have been conducted regarding the hardware/instrumentation and reagent development, thus allowing fine cell analysis up to 20 parameters. As a result, this technology generates very complex datasets that demand for the development of optimal tools of analysis. Recently, many independent research groups approached the problem by using both supervised and unsupervised methods. In this article, we will review the new developments concerning the use of bioinformatics for polychromatic flow cytometry and propose what should be done to unravel the enormous heterogeneity of the cells we interrogate each day. Published 2010 Wiley‐Liss,Inc.


Nature Protocols | 2007

Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry

Leonarda Troiano; Roberta Ferraresi; Enrico Lugli; Elisa Nemes; Erika Roat; Milena Nasi; Marcello Pinti; Andrea Cossarizza

The analysis of changes in mitochondrial membrane potential (MMP) that can occur during apoptosis provides precious information on the mechanisms and pathways of cell death. For many years, the metachromatic fluorochrome JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide) was used for this purpose. Thanks to new dyes and to the technical improvements recently adopted in several flow cytometers, it is now possible to investigate, along with MMP, a variety of other parameters. Using three sources of excitation and polychromatic flow cytometry, we have developed a protocol that can be applied to cells undergoing apoptosis. In the model of U937 cells incubated with the chemopreventive agent quercetin (3,3′,4′,5,7-pentahydroxyflavone), we describe the detection at the single cell level of changes in MMP (by JC-1), early apoptosis (exposition of phosphatidylserine on the plasma membrane detected by annexin-V), late apoptosis and secondary necrosis (decreased DNA content by Hoechst 33342 and permeability of the plasma membrane to propidium iodide). The procedure can be completed in less than 2 h.


Cytometry Part A | 2005

Characterization of Cells with Different Mitochondrial Membrane Potential During Apoptosis

Enrico Lugli; Leonarda Troiano; Roberta Ferraresi; Erika Roat; Nicole Prada; Milena Nasi; Marcello Pinti; Edwin L. Cooper; Andrea Cossarizza

Until now, the simultaneous analysis of several parameters during apoptosis, including DNA content and mitochondrial membrane potential (ΔΨ), has not been possible because of the spectral characteristics of the commonly used dyes. Using polychromatic flow cytometry based upon multiple laser and UV lamp excitation, we have characterized cells with different ΔΨ during apoptosis.


Nature Protocols | 2013

Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells.

Enrico Lugli; Luca Gattinoni; Alessandra Roberto; Domenico Mavilio; David A. Price; Nicholas P. Restifo; Mario Roederer

The T cell compartment is phenotypically and functionally heterogeneous; subsets of naive and memory cells have different functional properties, and also differ with respect to homeostatic potential and the ability to persist in vivo. Human stem cell memory T (TSCM) cells, which possess superior immune reconstitution and antitumor response capabilities, can be identified by polychromatic flow cytometry on the basis of the simultaneous expression of several naive markers together with the memory marker CD95. We describe here a protocol based on the minimum set of markers required for optimal identification of human and nonhuman primate (NHP) TSCM cells with commonly available flow cytometers. By using flow sorters, TSCM cells can thereby be isolated efficiently at high yield and purity. With the use of the 5.5-h isolation procedure, depending on the number of cells needed, the sorting procedure can last for 2–15 h. We also indicate multiple strategies for their efficient expansion in vitro at consistent numbers for functional characterization or adoptive transfer experiments.

Collaboration


Dive into the Enrico Lugli's collaboration.

Top Co-Authors

Avatar

Andrea Cossarizza

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Marcello Pinti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milena Nasi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Leonarda Troiano

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Mario Roederer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Roberta Ferraresi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Erika Roat

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Nemes

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Cristina Mussini

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge