Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Meli is active.

Publication


Featured researches published by Enrico Meli.


Vehicle System Dynamics | 2008

A railway vehicle multibody model for real-time applications

Enrico Meli; Monica Malvezzi; Susanna Papini; Luca Pugi; Mirko Rinchi; Andrea Rindi

Hardware in the loop (HIL) techniques are widely used for fast prototyping of control systems, electronic and mechatronic devices. In the railway field, several mechatronic on board subsystems are often tested and calibrated following the HIL approach. The accuracy of HIL tests depends on how the simulated virtual environment approximates the physical conditions. As the computational power available on real-time hardware grows, the demand for more complex and realistic models of railway vehicles for real-time application increases. In past research activities, the authors worked on the implementation of simplified real-time models for several applications and in particular for an HIL test rig devoted to the type approval of wheel slide protection systems. The activity has then been focused on the development of a three-dimensional model of the dynamics of a railway vehicle for more complex applications. The paper summarises the features and the results of the study.


Vehicle System Dynamics | 2009

Dynamic simulation of railway vehicles: wheel/rail contact analysis

Jury Auciello; Enrico Meli; Stefano Falomi; Monica Malvezzi

The multibody simulation of railway vehicle dynamics needs a reliable and efficient method to evaluate the contact points between wheel and rail, because their positions have a considerable influence on the direction and intensity of the contact forces. In this work, an innovative semi-analytic procedure for the detection of the wheel/rail contact points (named the DIFF method) is presented. This method considers the wheel and the rail as two surfaces whose analytic expressions are known and is based on the idea that in the contact points the difference between the surfaces has local minima and is equivalent to solving an algebraic two-dimensional system. The original problem can be reduced analytically to a simple scalar equation that can be easily solved numerically (since the problem dimension is one, even elementary non-iterative algorithms can be efficient).


Robotics and Autonomous Systems | 2014

Cooperative localization of a team of AUVs by a tetrahedral configuration

Benedetto Allotta; Riccardo Costanzi; Enrico Meli; Luca Pugi; Alessandro Ridolfi; Gregorio Vettori

This paper investigates the principles of a Cooperative Localization Algorithm for a team of at least three Autonomous Underwater Vehicles (AUVs) with respect to a surface support ship, without the use of Ultra-Short Baseline (USBL). It is assumed that each AUV is equipped with a low-cost Inertial Measurement Unit (IMU), a compass and a depth sensor, but only one of them has a high accuracy navigation sensor such as the Doppler Velocity Log (DVL). The surface boat locates itself by means of Global Positioning System (GPS). Range measurements provided by acoustic modems allow to avoid an unbounded error growth in the position estimate of each AUV. A geometric method, based on a tetrahedral configuration to obtain a deterministic fix for position, is proposed. This method allows to extend the advantages of the use of the DVL to the position estimate of other vehicles not equipped with DVL. The paper addresses also some of the problems related to the limitations of acoustic communication. The algorithm has been implemented and tested in simulations for a fleet of three AUVs and a surface support ship. An innovative cooperative localization algorithm for AUVs has been designed.Acoustic modems for communication are used as sensors of relative distance.The method is based on geometric relationships of a tetrahedral configuration.The algorithm performance are tested through a complete simulation model.A periodic reset of the estimation error is obtained for all the AUVs of the team.


Vehicle System Dynamics | 2012

Development and validation of a wear model for the analysis of the wheel profile evolution in railway vehicles

Jury Auciello; M. Ignesti; Monica Malvezzi; Enrico Meli; Andrea Rindi

The numerical wheel wear prediction in railway applications is of great importance for different aspects, such as the safety against vehicle instability and derailment, the planning of wheelset maintenance interventions and the design of an optimal wheel profile from the wear point of view. For these reasons, this paper presents a complete model aimed at the evaluation of the wheel wear and the wheel profile evolution by means of dynamic simulations, organised in two parts which interact with each other mutually: a vehicles dynamic model and a model for the wear estimation. The first is a 3D multibody model of a railway vehicle implemented in SIMPACK™, a commercial software for the analysis of mechanical systems, where the wheel–rail interaction is entrusted to a C/C++user routine external to SIMPACK, in which the global contact model is implemented. In this regard, the research on the contact points between the wheel and the rail is based on an innovative algorithm developed by the authors in previous works, while normal and tangential forces in the contact patches are calculated according to Hertzs theory and Kalkers global theory, respectively. Due to the numerical efficiency of the global contact model, the multibody vehicle and the contact model interact directly online during the dynamic simulations. The second is the wear model, written in the MATLAB® environment, mainly based on an experimental relationship between the frictional power developed at the wheel–rail interface and the amount of material removed by wear. Starting from a few outputs of the multibody simulations (position of contact points, contact forces and rigid creepages), it evaluates the local variables, such as the contact pressures and local creepages, using a local contact model (Kalkers FASTSIM algorithm). These data are then passed to another subsystem which evaluates, by means of the considered experimental relationship, both the material to be removed and its distribution along the wheel profile, obtaining the correspondent worn wheel geometry. The wheel wear evolution is reproduced by dividing the overall chosen mileage to be simulated in discrete spatial steps: at each step, the dynamic simulations are performed by means of the 3D multibody model keeping the wheel profile constant, while the wheel geometry is updated through the wear model only at the end of the discrete step. Thus, the two parts of the whole model work alternately until the completion of the whole established mileage. Clearly, the choice of an appropriate step length is one of the most important aspects of the procedure and it directly affects the result accuracy and the required computational time to complete the analysis. The whole model has been validated using experimental data relative to tests performed with the ALn 501 ‘Minuetto’ vehicle in service on the Aosta–Pre Saint Didier track; this work has been carried out thanks to a collaboration with Trenitalia S.p.A and Rete Ferroviaria Italiana, which have provided the necessary technical data and experimental results.


Vehicle System Dynamics | 2015

Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

Roberto Conti; Emanuele Galardi; Enrico Meli; Daniele Nocciolini; Luca Pugi; Andrea Rindi

Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.


Robotics and Autonomous Systems | 2015

An innovative decentralized strategy for I-AUVs cooperative manipulation tasks

Roberto Conti; Enrico Meli; Alessandro Ridolfi; Benedetto Allotta

In the last years, a challenging field of autonomous robotics is represented by cooperative mobile manipulation carried out in different environments (aerial, terrestrial and underwater environment). As regards cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs), this application is characterized by a more complex environment of work, compared to the terrestrial or aerial ones, both due to different technological problems, e.g. localization and communication in underwater environment. However, the use of Autonomous Underwater Vehicle (AUV) and I-AUV will necessarily grow up in the future exploration of the sea. Particularly, cooperative I-AUVs represent the natural evolution of single centralized I-AUV because they may be used in various underwater assembly tasks, such as complex underwater structure construction and maintenance (e.g. underwater pipeline and cable transportation can be carried out by multiple cooperative I-AUVs). Furthermore, underwater search and rescue tasks could be more efficient and effective if multiple I-AUVs were used.In this paper, the authors propose an innovative decentralized approach for cooperative mobile manipulation of I-AUVs. This decentralized strategy is based on a different use of potential field method; in particular, a multi-layer control structure is developed to in parallel manage the coordination of the swarm, the guidance and navigation of the I-AUVs and the manipulation task. The main advantage of the potential field method is that less information is necessary: navigation and control problems are reduced to the evaluation of the distance vector among the vehicles, object and obstacles. Moreover, because of the technological problems caused by the underwater environment, the reduction of the transmitted data is one of the keypoints of this architecture. In MATLAB?-Simulink?, the authors have simulated a transportation task of a partially known object along a reference trajectory in an unknown environment, where some obstacles are placed. The task is performed by an I-AUV swarm composed of four vehicles, each one provided of a 7 Degrees Of Freedom (DOFs) robotic arm. An innovative cooperative manipulation strategy for I-AUVs has been developed.A new control strategy based on potential field method has been tested.Accurate vehicle modelling has been used.The cooperative manipulation strategy has been tested through suitable simulation campaigns.


Vehicle System Dynamics | 2012

A numerical model of a HIL scaled roller rig for simulation of wheel–rail degraded adhesion condition

Roberto Conti; Enrico Meli; Luca Pugi; Monica Malvezzi; Fabio Bartolini; Benedetto Allotta; Andrea Rindi; P. Toni

Scaled roller rigs used for railway applications play a fundamental role in the development of new technologies and new devices, combining the hardware in the loop (HIL) benefits with the reduction of the economic investments. The main problem of the scaled roller rig with respect to the full scale ones is the improved complexity due to the scaling factors. For this reason, before building the test rig, the development of a software model of the HIL system can be useful to analyse the system behaviour in different operative conditions. One has to consider the multi-body behaviour of the scaled roller rig, the controller and the model of the virtual vehicle, whose dynamics has to be reproduced on the rig. The main purpose of this work is the development of a complete model that satisfies the previous requirements and in particular the performance analysis of the controller and of the dynamical behaviour of the scaled roller rig when some disturbances are simulated with low adhesion conditions. Since the scaled roller rig will be used to simulate degraded adhesion conditions, accurate and realistic wheel–roller contact model also has to be included in the model. The contact model consists of two parts: the contact point detection and the adhesion model. The first part is based on a numerical method described in some previous studies for the wheel–rail case and modified to simulate the three-dimensional contact between revolute surfaces (wheel–roller). The second part consists in the evaluation of the contact forces by means of the Hertz theory for the normal problem and the Kalker theory for the tangential problem. Some numerical tests were performed, in particular low adhesion conditions were simulated, and bogie hunting and dynamical imbalance of the wheelsets were introduced. The tests were devoted to verify the robustness of control system with respect to some of the more frequent disturbances that may influence the roller rig dynamics. In particular we verified that the wheelset imbalance could significantly influence system performance, and to reduce the effect of this disturbance a multistate filter was designed.


Vehicle System Dynamics | 2011

Development and implementation of a differential elastic wheel-rail contact model for multibody applications

Enrico Meli; Silvia Magheri; Monica Malvezzi

The wheel–rail contact analysis plays a fundamental role in the multibody modelling of railway vehicles. A good contact model must provide an accurate description of the global and local contact phenomena (contact forces, position and shape of the contact patch, stresses and displacements) and a general handling of the multiple contact. The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). In this work, an elastic wheel–rail contact model that satisfies the previous specifics is presented. The model considers the wheel and the rail as elastic deformable bodies and requires the numerical solution of Naviers elasticity equation. The contact between wheel and rail has been described by means of suitable analytical contact conditions. Subsequently, the contact model has been inserted within the multibody model of a benchmark railway vehicle (the Manchester Wagon) in order to obtain a complete model of the wagon. The model has been implemented in the Matlab/Simulink environment. Finally, numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the model. The results obtained with the proposed method have been compared with those obtained by means of a standard commercial software. The main purpose is to achieve a better integration between the differential modelling and the multibody modelling. This kind of integration is almost absent in the literature (especially in the railway field) due to the computational cost and to the memory storage needs. However, it is very important because only the differential modelling allows an accurate analysis of the contact problem (in terms of contact forces, position and shape of the contact patch, stresses and displacements) while the multibody modelling is currently the standard in the study of the railway dynamics.


Vehicle System Dynamics | 2013

Development of a wear model for the wheel profile optimisation on railway vehicles

M. Ignesti; Alice Innocenti; Lorenzo Marini; Enrico Meli; Andrea Rindi

The modelling and the reduction of wear due to wheel–rail interaction is a fundamental aspect in the railway field, mainly correlated to safety, maintenance interventions and costs. In this work, the authors present two innovative wheel profiles, specifically designed with the aim of improving the wear and stability behaviour of the standard ORE S1002 wheel profile matched with the UIC60 rail profile canted at 1/20 rad, which represents the wheel–rail combination adopted in the Italian railway line. The two wheel profiles, conventionally named CD1 and DR2, have been developed by the authors in collaboration with Trenitalia S.p.A. The CD1 profile has been designed with the purpose of spreading the contact points in the flange zone on a larger area in order to reduce wear phenomena and having a constant equivalent conicity for small lateral displacements of the wheelset with respect to the centred position in the track. The DR2 wheel profile is instead designed to guarantee the same kinematic characteristics of the matching formed by ORE S1002 wheel profile and UIC60 rail profile with laying angle α p equal to 1/40 rad, widely common in European railways and characterised by good performances in both wear and kinematic behaviour. The evolution of wheel profiles due to wear has been evaluated through a wear model developed and validated by the authors in previous works. The wear model comprises two mutually interactive units: a vehicle model for the dynamic simulations and a model for the wear assessment. The whole model is based on a discrete process: each discrete step consists in one dynamic simulation and one profile update by means of the wear model while, within the discrete step, the profiles are supposed to be constant. The choice of an appropriate step is crucial in terms of precision and computational effort: the particular strategy adopted in the current work has been chosen for its capacity in representing the nonlinear wear evolution and for the low computational time required. In the present research, the investigated trainset is the passenger vehicle ALSTOM ALn 501 ‘Minuetto’, which is usually equipped with the standard ORE S1002 wheel profile in Italian railways. The entire model has been simulated on a virtual track specifically developed to represent a statistical description of the whole Italian line. The data necessary to build the virtual track and the vehicle model were provided by Trenitalia S.p.A. and Rete Ferroviaria Italiana. The CD1 and DR2 wheel profiles, matched to the UIC60 rail with cant 1/20 rad, have shown a good behaviour in terms of wear resistance if compared with the old ORE S1002 wheel profile, consequently assuring a more uniform distribution of the removed material and a prolongation of the mean time between two subsequent re-profiling interventions.


Robotica | 2017

Development, design and validation of an assistive device for hand disabilities based on an innovative mechanism

Roberto Conti; Benedetto Allotta; Enrico Meli; Alessandro Ridolfi

In accordance with strict requirements of portability, cheapness, and modularity, an innovative assistive device for hand disabilities has been developed and validated. This robotic orthosis is designed to be a low-cost, portable hand exoskeleton to assist people with physical disabilities in their everyday lives. Referring to hand opening disabilities, the authors have developed a methodology which, by starting from the geometrical characteristics of the patients hand, defines the novel kinematic mechanism that better fits to the finger trajectories. The authors have validated the proposed novel mechanism by carrying out a Hand Exoskeleton System (HES) prototype, based on a single-phalanx mechanism, cable driven. The testing phase of the real prototype with a patient is currently on going.

Collaboration


Dive into the Enrico Meli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Pugi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge