Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Pierantozzi is active.

Publication


Featured researches published by Enrico Pierantozzi.


Stem Cells and Development | 2011

Pluripotency Regulators in Human Mesenchymal Stem Cells: Expression of NANOG But Not of OCT-4 and SOX-2

Enrico Pierantozzi; Barbara Gava; Ivana Manini; Franco Roviello; Giuseppe Marotta; Mario Chiavarelli; Vincenzo Sorrentino

Mesenchymal stem cells (MSCs) are adult multipotent cells able to differentiate toward mature mesodermal lineages. In spite of more than a decade of investigation, little is known about the molecular mechanisms regulating the undifferentiated state and the identity of distinct functional subpopulations in these cells. Transcription factors that regulate the maintenance of the pluripotent state in embryonic stem cells, including NANOG, SOX2, and OCT4, have been proposed to play a similar role also in adult stem cells, although with conflicting results. We performed a critical evaluation of expression of these 3 transcription factors and found that NANOG, but not OCT-4 and SOX-2, is expressed in cultured human adult MSCs. Actually, NANOG was not expressed in freshly isolated MSCs, but was detected only after in vitro culture. NANOG was detected only in proliferating cells, but not in MSCs induced to differentiate. The percentage of cells expressing NANOG was maintained throughout early passages of MSCs, but then started to decrease in late passages in MSCs from adipose tissue and heart but not from bone marrow. However, the number of NANOG-expressing cells did not associate with the proliferative and differentiative capabilities of MSC populations, neither its expression appeared to identify cells having stem or progenitor cell properties. Accordingly, we propose that activation of NANOG expression in MSCs is associated with, although cannot directly regulate, the transition from in vivo quiescence to adaptation to in vitro growth conditions.


Journal of Cell Biology | 2013

Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity

Davide Randazzo; Emiliana Giacomello; Stefania Lorenzini; Daniela Rossi; Enrico Pierantozzi; Bert Blaauw; Carlo Reggiani; Stephan Lange; Angela K. Peter; Ju Chen; Vincenzo Sorrentino

Obscurin contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity in skeletal muscle fibers.


Human Mutation | 2014

A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates

Daniela Rossi; Bianca Vezzani; Lucia Galli; Cecilia Paolini; Luana Toniolo; Enrico Pierantozzi; Simone Spinozzi; Virginia Barone; Elena Pegoraro; Luca Bello; Giovanna Cenacchi; Gaetano Vattemi; Giuliano Tomelleri; Giulia Ricci; Gabriele Siciliano; Feliciano Protasi; Carlo Reggiani; Vincenzo Sorrentino

A missense mutation in the calsequestrin‐1 gene (CASQ1) was found in a group of patients with a myopathy characterized by weakness, fatigue, and the presence of large vacuoles containing characteristic inclusions resulting from the aggregation of sarcoplasmic reticulum (SR) proteins. The mutation affects a conserved aspartic acid in position 244 (p.Asp244Gly) located in one of the high‐affinity Ca2+‐binding sites of CASQ1 and alters the kinetics of Ca2+ release in muscle fibers. Expression of the mutated CASQ1 protein in COS‐7 cells showed a markedly reduced ability in forming elongated polymers, whereas both in cultured myotubes and in in vivo mouse fibers induced the formation of electron‐dense SR vacuoles containing aggregates of the mutant CASQ1 protein that resemble those observed in muscle biopsies of patients. Altogether, these results support the view that a single missense mutation in the CASQ1 gene causes the formation of abnormal SR vacuoles containing aggregates of CASQ1, and other SR proteins, results in altered Ca2+ release in skeletal muscle fibers, and, hence, is responsible for the clinical phenotype observed in these patients.


Cell and Tissue Research | 2011

Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue.

Ivana Manini; Letizia Gulino; Barbara Gava; Enrico Pierantozzi; Carlo Curina; Daniela Rossi; Anna Brafa; Carlo D’Aniello; Vincenzo Sorrentino

Mesenchymal stem cells (MSCs) from human adult adipose tissue (A-MSCs) have a better differentiative ability than MSCs derived from the derma (D-MSCs). To test whether this difference is associated with differences in the content of multi-potent progenitors in A-MSCs, the number and the differentiative properties of multi-potent progenitors have been analyzed in various preparations of A-MSCs and D-MSCs. Adipogenic and osteogenic differentiation performed on colony-forming units have revealed that adipogenic and osteogenic progenitors are similar in the two populations, with only a slighty better performance of A-MSCs over D-MSCs from passages p0 to p15. An analysis of the presence of tri-, bi-, uni- and nulli-potent progenitors isolated immediately after isolation from tissues (p0) has shown comparable numbers of tri-potent and bi-potent progenitors in MSCs from the two tissues, whereas a higher content in uni-potent cells committed to adipocytes and a lower content in nulli-potent cells has been observed in A-MSCs. Furthermore, we have characterized the progenitors present in A-MSCs after six passages in vitro to verify the way in which in vitro culture can affect content in progenitor cells. We have observed that the percentage of tri-potent cells in A-MSCs at p6 remains similar to that observed at p0, although bi-potent and uni-potent progenitors committed to osteogenic differentiation increase at p6, whereas nulli-potent cells decrease at p6. These data indicate that the greater differentiative ability of A-MSC populations does not correlate directly with the number of multi-potent progenitors, suggesting that other factors influence the differentiation of bulk populations of A-MSCs.


Biochemical Journal | 2014

Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum

Daniela Rossi; Cristina Bencini; Marina Maritati; Francesca Benini; Stefania Lorenzini; Enrico Pierantozzi; Angela Maria Scarcella; Cecilia Paolini; Feliciano Protasi; Vincenzo Sorrentino

Ca2+ release, which is necessary for muscle contraction, occurs at the j-SR (junctional domain of the sarcoplasmic reticulum). It requires the assembly of a large multiprotein complex containing the RyR (ryanodine receptor) and additional proteins, including triadin and calsequestrin. The signals which drive these proteins to the j-SR and how they assemble to form this multiprotein complex are poorly understood. To address aspects of these questions we studied the localization, dynamic properties and molecular interactions of triadin. We identified three regions, named TR1 (targeting region 1), TR2 and TR3, that contribute to the localization of triadin at the j-SR. FRAP experiments showed that triadin is stably associated with the j-SR and that this association is mediated by TR3. Protein pull-down experiments indicated that TR3 contains binding sites for calsequestrin-1 and that triadin clustering can be enhanced by binding to calsequestrin-1. These findings were confirmed by FRET experiments. Interestingly, the stable association of triadin to the j-SR was significantly decreased in myotubes from calsequestrin-1 knockout mice. Taken together, these results identify three regions in triadin that mediate targeting to the j-SR and reveal a role for calsequestrin-1 in promoting the stable association of triadin to the multiprotein complex associated with RyR.


Cell and Tissue Research | 2015

Human pericytes isolated from adipose tissue have better differentiation abilities than their mesenchymal stem cell counterparts

Enrico Pierantozzi; M. Badin; Bianca Vezzani; Carlo Curina; Davide Randazzo; Felice Petraglia; Daniella Rossi; Vincenzo Sorrentino

Multi-potent mesenchymal stem/progenitor cells are present in almost all organs and tissues, although their identity remains elusive. Several isolation strategies have been pursued to identify these cells prospectively, leading to the isolation of various cell populations endowed with multi-lineage mesodermal potential. Historically, mesenchymal stem cells (MSCs) were the first cell population to be isolated from the stromal fraction of most connective tissues. These cells are able to differentiate towards various mesodermal lineages and are currently the most studied adult mesodermal progenitors. Recently, the isolation of a subpopulation of microvascular pericytes (PCs) endowed with multi-lineage mesodermal potential has led to the identification of mesenchymal progenitors that reside in a defined anatomical location, namely the wall of small blood vessels. To gain insight into these two related cell populations, we performed a detailed analysis of the mesodermal potential of isogenic human MSCs and PCs isolated from white adipose tissue. Although both cell populations expressed known mesodermal markers at similar levels and displayed a comparable growth rate, PCs differentiated towards osteocytes, adipocytes and myocytes more efficiently than their MSC counterparts, as revealed by both histological and molecular assays. Our results show that microvascular PCs are more prone to mesenchymal differentiation than MSCs and therefore represent a preferable source of human adult mesenchymal progenitors when adipose tissue is used as a cell source.


Stem Cells and Development | 2016

Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability

Enrico Pierantozzi; Bianca Vezzani; Margherita Badin; Carlo Curina; Filiberto Maria Severi; Felice Petraglia; Davide Randazzo; Daniela Rossi; Vincenzo Sorrentino

Microvascular pericytes (PCs) are considered the adult counterpart of the embryonic mesoangioblasts, which represent a multipotent cell population that resides in the dorsal aorta of the developing embryo. Although PCs have been isolated from several adult organs and tissues, it is still controversial whether PCs from different tissues exhibit distinct differentiation potentials. To address this point, we investigated the differentiation potentials of isogenic human cultured PCs isolated from skeletal (sk-hPCs) and smooth muscle tissues (sm-hPCs). We found that both sk-hPCs and sm-hPCs expressed known pericytic markers and did not express endothelial, hematopoietic, and myogenic markers. Both sk-hPCs and sm-hPCs were able to differentiate into smooth muscle cells. In contrast, sk-hPCs, but not sm-hPCs, differentiated in skeletal muscle cells and osteocytes. Given the reported ability of the Notch pathway to regulate skeletal muscle and osteogenic differentiation, sk-hPCs and sm-hPCs were treated with N-[N-(3,5- difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a known inhibitor of Notch signaling. DAPT treatment, as assessed by histological and molecular analysis, enhanced myogenic differentiation and abolished osteogenic potential of sk-hPCs. In contrast, DAPT treatment did not affect either myogenic or osteogenic differentiation of sm-hPCs. In summary, these results indicate that, despite being isolated from the same anatomical niche, cultured PCs from skeletal muscle and smooth muscle tissues display distinct differentiation abilities.


American Journal of Physiology-cell Physiology | 2017

Exercise-induced alterations and loss of sarcomeric M-line organization in the diaphragm muscle of obscurin knockout mice.

Davide Randazzo; Bert Blaauw; Cecilia Paolini; Enrico Pierantozzi; Simone Spinozzi; Stephan Lange; Ju Chen; Feliciano Protasi; Carlo Reggiani; Vincenzo Sorrentino

We recently reported that skeletal muscle fibers of obscurin knockout (KO) mice present altered distribution of ankyrin B (ankB), disorganization of the subsarcolemmal microtubules, and reduced localization of dystrophin at costameres. In addition, these mice have impaired running endurance and increased exercise-induced sarcolemmal damage compared with wild-type animals. Here, we report results from a combined approach of physiological, morphological, and structural studies in which we further characterize the skeletal muscles of obscurin KO mice. A detailed examination of exercise performance, using different running protocols, revealed that the reduced endurance of obscurin KO animals on the treadmill depends on exercise intensity and age. Indeed, a mild running protocol did not evidence significant differences between control and obscurin KO mice, whereas comparison of running abilities of 2-, 6-, and 11-mo-old mice exercised at exhaustion revealed a progressive age-dependent reduction of the exercise tolerance in KO mice. Histological analysis indicated that heavy exercise induced leukocyte infiltration, fibrotic connective tissue deposition, and hypercontractures in the diaphragm of KO mice. On the same line, electron microscopy revealed that, in the diaphragm of exercised obscurin KO mice, but not in the hindlimb muscles, both M-line and H-zone of sarcomeres appeared wavy and less defined. Altogether, these results suggest that obscurin is required for the maintenance of morphological and ultrastructural integrity of skeletal muscle fibers against damage induced by intense mechanical stress and point to the diaphragm as the skeletal muscle most severely affected in obscurin-deficient mice.


PLOS ONE | 2017

A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy

Daniela Rossi; Johanna Palmio; Anni Evilä; Lucia Galli; Virginia Barone; Tracy A. Caldwell; Rachel A. Policke; Esraa Aldkheil; Christopher E. Berndsen; Nathan T. Wright; Edoardo Malfatti; Guy Brochier; Enrico Pierantozzi; Albena Jordanova; Velina Guergueltcheva; Norma B. Romero; Peter Hackman; Bruno Eymard; Bjarne Udd; Vincenzo Sorrentino

A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.


Human Mutation | 2017

Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy

Virginia Barone; Valeria Del Re; Alessandra Gamberucci; Valentina Polverino; Lucia Galli; Daniela Rossi; Elisa Costanzi; Luana Toniolo; Gianna Berti; Alessandro Malandrini; Giulia Ricci; Gabriele Siciliano; Gaetano Vattemi; Giuliano Tomelleri; Enrico Pierantozzi; Simone Spinozzi; Nila Volpi; Rosella Fulceri; Roberto Battistutta; Carlo Reggiani; Vincenzo Sorrentino

Here, we report the identification of three novel missense mutations in the calsequestrin‐1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+‐dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+‐dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.

Collaboration


Dive into the Enrico Pierantozzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge