Enrico Schulz
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enrico Schulz.
Journal of Child Psychology and Psychiatry | 2013
Karin Landerl; Franck Ramus; Kristina Moll; Heikki Lyytinen; Paavo H. T. Leppänen; Kaisa Lohvansuu; Michael Conlon O'Donovan; Julie Williams; Jürgen Bartling; Jennifer Bruder; Sarah Kunze; Nina Neuhoff; Dénes Tóth; Ferenc Honbolygó; Valéria Csépe; Caroline Bogliotti; Stéphanie Iannuzzi; Yves Chaix; Jean-François Démonet; E. Longeras; Sylviane Valdois; C. Chabernaud; F. Delteil-Pinton; Catherine Billard; Florence George; Johannes C. Ziegler; I. Comte-Gervais; Isabelle Soares-Boucaud; Christophe Gérard; Leo Blomert
BACKGROUND The relationship between phoneme awareness, rapid automatized naming (RAN), verbal short-term/working memory (ST/WM) and diagnostic category is investigated in control and dyslexic children, and the extent to which this depends on orthographic complexity. METHODS General cognitive, phonological and literacy skills were tested in 1,138 control and 1,114 dyslexic children speaking six different languages spanning a large range of orthographic complexity (Finnish, Hungarian, German, Dutch, French, English). RESULTS Phoneme deletion and RAN were strong concurrent predictors of developmental dyslexia, while verbal ST/WM and general verbal abilities played a comparatively minor role. In logistic regression models, more participants were classified correctly when orthography was more complex. The impact of phoneme deletion and RAN-digits was stronger in complex than in less complex orthographies. CONCLUSIONS Findings are largely consistent with the literature on predictors of dyslexia and literacy skills, while uniquely demonstrating how orthographic complexity exacerbates some symptoms of dyslexia.
Anesthesiology | 2013
Denis Jordan; Rüdiger Ilg; Valentin Riedl; Anna Schorer; Sabine Grimberg; Susanne Neufang; Adem Omerovic; Sebastian Berger; Gisela Untergehrer; Christine Preibisch; Enrico Schulz; Tibor Schuster; Manuel S. Schröter; Victor I. Spoormaker; Claus Zimmer; Bernhard Hemmer; Afra M. Wohlschläger; Eberhard Kochs; Gerhard Schneider
Background: In imaging functional connectivity (FC) analyses of the resting brain, alterations of FC during unconsciousness have been reported. These results are in accordance with recent electroencephalographic studies observing impaired top–down processing during anesthesia. In this study, simultaneous records of functional magnetic resonance imaging (fMRI) and electroencephalogram were performed to investigate the causality of neural mechanisms during propofol-induced loss of consciousness by correlating FC in fMRI and directional connectivity (DC) in electroencephalogram. Methods: Resting-state 63-channel electroencephalogram and blood oxygen level–dependent 3-Tesla fMRI of 15 healthy subjects were simultaneously registered during consciousness and propofol-induced loss of consciousness. To indicate DC, electroencephalographic symbolic transfer entropy was applied as a nonlinear measure of mutual interdependencies between underlying physiological processes. The relationship between FC of resting-state networks of the brain (z values) and DC was analyzed by a partial correlation. Results: Independent component analyses of resting-state fMRI showed decreased FC in frontoparietal default networks during unconsciousness, whereas FC in primary sensory networks increased. DC indicated a decline in frontal–parietal (area under the receiver characteristic curve, 0.92; 95% CI, 0.68–1.00) and frontooccipital (0.82; 0.53–1.00) feedback DC (P < 0.05 corrected). The changes of FC in the anterior default network correlated with the changes of DC in frontal–parietal (rpartial = +0.62; P = 0.030) and frontal–occipital (+0.63; 0.048) electroencephalographic electrodes (P < 0.05 corrected). Conclusion: The simultaneous propofol-induced suppression of frontal feedback connectivity in the electroencephalogram and of frontoparietal FC in the fMRI indicates a fundamental role of top–down processing for consciousness.
Biological Psychiatry | 2009
Urs Maurer; Kerstin Bucher; Silvia Brem; Rosmarie Benz; Felicitas Kranz; Enrico Schulz; Sanne van der Mark; Hans-Christoph Steinhausen; Daniel Brandeis
BACKGROUND More struggling readers could profit from additional help at the beginning of reading acquisition if dyslexia prediction were more successful. Currently, prediction is based only on behavioral assessment of early phonological processing deficits associated with dyslexia, but it might be improved by adding brain-based measures. METHODS In a 5-year longitudinal study of children with (n = 21) and without (n = 23) familial risk for dyslexia, we tested whether neurophysiological measures of automatic phoneme and tone deviance processing obtained in kindergarten would improve prediction of reading over behavioral measures alone. RESULTS Together, neurophysiological and behavioral measures obtained in kindergarten significantly predicted reading in school. Particularly the late mismatch negativity measure that indicated hemispheric lateralization of automatic phoneme processing improved prediction of reading ability over behavioral measures. It was also the only significant predictor for long-term reading success in fifth grade. Importantly, this result also held for the subgroup of children at familial risk. CONCLUSIONS The results demonstrate that brain-based measures of processing deficits associated with dyslexia improve prediction of reading and thus may be further evaluated to complement clinical practice of dyslexia prediction, especially in targeted populations, such as children with a familial risk.
Cerebral Cortex | 2012
Enrico Schulz; Andrew Zherdin; Laura Tiemann; Claudia Plant; Markus Ploner
The perception of pain is characterized by its tremendous intra- and interindividual variability. Different individuals perceive the very same painful event largely differently. Here, we aimed to predict the individual pain sensitivity from brain activity. We repeatedly applied identical painful stimuli to healthy human subjects and recorded brain activity by using electroencephalography (EEG). We applied a multivariate pattern analysis to the time-frequency transformed single-trial EEG responses. Our results show that a classifier trained on a group of healthy individuals can predict another individuals pain sensitivity with an accuracy of 83%. Classification accuracy depended on pain-evoked responses at about 8 Hz and pain-induced gamma oscillations at about 80 Hz. These results reveal that the temporal-spectral pattern of pain-related neuronal responses provides valuable information about the perception of pain. Beyond, our approach may help to establish an objective neuronal marker of pain sensitivity which can potentially be recorded from a single EEG electrode.
NeuroImage | 2008
Enrico Schulz; Urs Maurer; Sanne van der Mark; Kerstin Bucher; Silvia Brem; Ernst Martin; Daniel Brandeis
Developmental dyslexia is a specific disorder of reading acquisition characterized by a phonological core deficit. Sentence reading is also impaired in dyslexic readers, but whether semantic processing deficits contribute is unclear. Combining spatially and temporally sensitive neuroimaging techniques to focus on semantic processing can provide a more comprehensive characterization of sentence reading in dyslexia. We recorded brain activity from 52 children (16 with dyslexia, 31 controls) with functional magnetic resonance imaging (fMRI) and event-related potentials (ERP) in two separate counterbalanced sessions. The children silently read and occasionally judged simple sentences with semantically congruous or incongruous endings. fMRI and ERP activation during sentence reading and semantic processing was analyzed across all children and also by comparing children with dyslexia to controls. For sentence reading, we analyzed the response to all words in a sentence; for semantic processing, we contrasted responses to incongruous and congruous endings. Sentence reading was characterized by activation in a left-lateralized language network. Semantic processing was characterized by activation in left-hemispheric regions of the inferior frontal and superior temporal cortex and by an electrophysiological N400 effect after 240 ms with consistent left anterior source localization. Children with dyslexia showed decreased activation for sentence reading in inferior parietal and frontal regions, and for semantic processing in inferior parietal regions, and during the N400 effect. Together, this suggests that semantic impairment during sentence reading reduces dyslexic childrens response in left anterior brain regions underlying the more phasic N400 effect and subsequently modulates the more sustained BOLD response in left inferior parietal regions.
Cerebral Cortex | 2011
Enrico Schulz; Laura Tiemann; Tibor Schuster; Joachim Gross; Markus Ploner
Perception is not a simple reflection of sensory information but varies within and between individuals. This applies particularly to the perception of pain, which, in the brain, is associated with neuronal responses at different frequencies. Here, we show how these different neuronal responses subserve interindividual and intraindividual variations in the perception of identical painful stimuli. A time-frequency analysis of single trial electroencephalographic data indicates that pain-related responses in the theta frequency range but not at higher gamma frequencies code for interindividual variations in the perception of pain. In contrast, both pain-related theta and gamma responses provide different and complementary information on intraindividual variations in the pain experience. We conclude that theta responses reflect rather constant physiological and psychological traits of the individual, whereas gamma responses relate to short-term modulations of the individuals state. These findings reveal how neuronal responses at different frequencies differentially contribute to the translation of sensory information into a subjective percept.
NeuroImage | 2011
Urs Maurer; Enrico Schulz; Silvia Brem; Sanne van der Mark; Kerstin Bucher; Ernst Martin; Daniel Brandeis
A consistent finding in functional brain imaging studies of reading with dyslexia is reduced inferior occipito-temporal activation linked to deviant processing of visual word forms. Time-sensitive event-related potentials (ERP) further revealed reduced inferior occipito-temporal N1 tuning for print in dyslexic 2nd graders suggesting the reduction affects fast processing and the initial development of dyslexia. Here, we followed up the same groups with ERP recordings and investigated how fast print tuning deficits in dyslexia develop from 2nd to 5th grade. Using functional magnetic resonance imaging (fMRI), we further characterized spatial aspects of print tuning in the 5th grade. The robust N1 tuning deficit for print in the dyslexic 2nd graders had largely disappeared by grade 5 consistent with a developmental delay. Reduced word-specific activation in dyslexic 5th graders fMRI data occurred bilaterally in middle temporal regions and in the left posterior superior sulcus. Although no group differences in inferior occipito-temporal regions appeared in the whole brain analysis, a region of interest analysis of the Visual Word Form Area revealed that control children showed a more lateralized word-specific activation pattern than the children with dyslexia. The results suggest that while impaired N1 tuning for print plays a major role for dyslexia at the beginning of learning to read, other aspects of visual word form processing in the same region remain impaired in dyslexic children after several years of reading practice. Overall, neural deficits associated with dyslexia appear to be plastic and to change throughout development and reading acquisition.
Cerebral Cortex | 2015
Enrico Schulz; Elisabeth S. May; Martina Postorino; Laura Tiemann; Moritz M. Nickel; Viktor Witkovsky; Paul Schmidt; Joachim Gross; Markus Ploner
Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain.
Pain | 2010
Laura Tiemann; Enrico Schulz; Joachim Gross; Markus Ploner
&NA; Successful behavior requires the attentional selection and preferred processing of behaviorally relevant sensory information. Painful stimuli are of utmost behavioral relevance and can therefore involuntarily affect attentional resources and interfere with ongoing behavior. However, the neuronal mechanisms which subserve the involuntary attentional effects of pain are largely unknown yet. Here, we therefore investigated the neuronal mechanisms of the attentional effects of pain by using electroencephalography during a visual attention task with the concurrent presentation of painful stimuli. Our results confirm that painful and visual stimuli induce gamma oscillations over central and occipital areas, respectively. Pain‐induced gamma oscillations were correlated with pain‐induced changes in visual gamma oscillations. Behaviorally, we observed variable effects of pain on visual reaction times, yielding an increase of reaction times for some subjects, as well as a decrease of reaction times for others. Most importantly, however, these changes in visual task performance were significantly related to pain‐induced changes of visual gamma oscillations. These findings demonstrate that the variable attentional effects of pain are closely related to changes in neuronal gamma oscillations in the human brain. In the hypervigilant state of chronic pain, maladaptive changes in the attentional effects of pain may be associated with abnormal changes in neuronal gamma oscillations. Our findings may thus contribute to the understanding of the neuronal substrates of pain in health and may open a new window towards the understanding of pathological alterations of the pain experience in chronic pain syndromes.
European Journal of Human Genetics | 2014
Jessica Becker; Darina Czamara; Thomas Scerri; Franck Ramus; Valéria Csépe; Joel B. Talcott; John Stein; Andrew P. Morris; Kerstin U. Ludwig; Per Hoffmann; Ferenc Honbolygó; Dénes Tóth; Fabien Fauchereau; Caroline Bogliotti; Stéphanie Iannuzzi; Yves Chaix; Sylviane Valdois; Catherine Billard; Florence George; Isabelle Soares-Boucaud; Christophe Gérard; Sanne van der Mark; Enrico Schulz; Anniek Vaessen; Urs Maurer; Kaisa Lohvansuu; Heikki Lyytinen; Marco Zucchelli; Daniel Brandeis; Leo Blomert
Dyslexia is one of the most common childhood disorders with a prevalence of around 5–10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a European cross-linguistic sample of school-age children – the NeuroDys cohort – that includes more than 900 individuals with dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls. Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both case–control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated. Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was significantly associated with either case–control status or quantitative measurements of word-reading or spelling in the meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger sample sizes to validate possibly weak genetic effects.