Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Tiacci is active.

Publication


Featured researches published by Enrico Tiacci.


The New England Journal of Medicine | 2011

BRAF Mutations in Hairy-Cell Leukemia

Enrico Tiacci; Vladimir Trifonov; Gianluca Schiavoni; Antony B. Holmes; Wolfgang Kern; Maria Paola Martelli; Alessandra Pucciarini; Barbara Bigerna; Roberta Pacini; Victoria A. Wells; Paolo Sportoletti; Valentina Pettirossi; Roberta Mannucci; Oliver Elliott; Arcangelo Liso; Achille Ambrosetti; Alessandro Pulsoni; Francesco Forconi; Livio Trentin; Gianpietro Semenzato; Giorgio Inghirami; Monia Capponi; Francesco Di Raimondo; Caterina Patti; Luca Arcaini; Pellegrino Musto; Stefano Pileri; Claudia Haferlach; Susanne Schnittger; Giovanni Pizzolo

BACKGROUND Hairy-cell leukemia (HCL) is a well-defined clinicopathological entity whose underlying genetic lesion is still obscure. METHODS We searched for HCL-associated mutations by performing massively parallel sequencing of the whole exome of leukemic and matched normal cells purified from the peripheral blood of an index patient with HCL. Findings were validated by Sanger sequencing in 47 additional patients with HCL. RESULTS Whole-exome sequencing identified five missense somatic clonal mutations that were confirmed on Sanger sequencing, including a heterozygous mutation in BRAF that results in the BRAF V600E variant protein. Since BRAF V600E is oncogenic in other tumors, further analyses were focused on this genetic lesion. The same BRAF mutation was noted in all the other 47 patients with HCL who were evaluated by means of Sanger sequencing. None of the 195 patients with other peripheral B-cell lymphomas or leukemias who were evaluated carried the BRAF V600E variant, including 38 patients with splenic marginal-zone lymphomas or unclassifiable splenic lymphomas or leukemias. In immunohistologic and Western blot studies, HCL cells expressed phosphorylated MEK and ERK (the downstream targets of the BRAF kinase), indicating a constitutive activation of the RAF-MEK-ERK mitogen-activated protein kinase pathway in HCL. In vitro incubation of BRAF-mutated primary leukemic hairy cells from 5 patients with PLX-4720, a specific inhibitor of active BRAF, led to a marked decrease in phosphorylated ERK and MEK. CONCLUSIONS; The BRAF V600E mutation was present in all patients with HCL who were evaluated. This finding may have implications for the pathogenesis, diagnosis, and targeted therapy of HCL. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Journal of Experimental Medicine | 2008

Origin and pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma as revealed by global gene expression analysis

Verena Brune; Enrico Tiacci; Ines Pfeil; Claudia Döring; Susan Eckerle; Carel J. M. van Noesel; Wolfram Klapper; Brunangelo Falini; Anja von Heydebreck; Dirk Metzler; Andreas Bräuninger; Martin-Leo Hansmann; Ralf Küppers

The pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly because of the technical challenge of analyzing its rare neoplastic lymphocytic and histiocytic (L&H) cells, which are dispersed in an abundant nonneoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected L&H lymphoma cells in comparison to normal and other malignant B cells that indicated a relationship of L&H cells to and/or that they originate from germinal center B cells at the transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell-rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype, and deregulation of many apoptosis regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive nuclear factor kappaB activity and aberrant extracellular signal-regulated kinase signaling. Thus, these findings shed new light on the nature of L&H cells, reveal several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.


The Lancet | 2004

Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1)

Brunangelo Falini; Enrico Tiacci; Arcangelo Liso; Katia Basso; Elena Sabattini; Roberta Pacini; Robin Foà; Alessandro Pulsoni; Riccardo Dalla Favera; Stefano Pileri

A marker capable of distinguishing with certainty between hairy cell leukaemia and other B-cell malignant disease would be of great diagnostic value. Through gene expression profiling, annexin A1 (ANXA1) has been identified as a gene that is upregulated in hairy cell leukaemia. We did immunostaining of 500 B-cell tumours with a specific anti-ANXA1 monoclonal antibody and showed that ANXA1 protein expression is specific to hairy cell leukaemia. Immunocytochemical detection of ANXA1 represents a simple, inexpensive, highly sensitive and specific (100%) assay for diagnosis of hairy cell leukaemia. This assay will be especially useful in distinguishing hairy cell leukaemia from splenic lymphoma with villous lymphocytes and variant hairy cell leukaemia, both of which usually respond poorly to treatments that are effective in hairy cell leukaemia.


Journal of Experimental Medicine | 2004

Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors

Katia Basso; Arcangelo Liso; Enrico Tiacci; Roberta Benedetti; Alessandro Pulsoni; Robin Foà; Francesco Di Raimondo; Achille Ambrosetti; Ulf Klein; Riccardo Dalla Favera; Brunangelo Falini

Hairy cell leukemia (HCL) is a chronic B cell malignancy characterized by the diffuse infiltration of bone marrow and spleen by cells displaying a typical “hairy” morphology. However, the nature of the HCL phenotype and its relationship to normal B cells and to other lymphoma subtypes remains unclear. Using gene expression profiling, we show here that HCL displays a homogeneous pattern of gene expression, which is clearly distinct from that of other B cell non-Hodgkin lymphomas. Comparison with the gene expression profiles of purified normal B cell subpopulations, including germinal center (GC), pre-GC (naive), and post-GC (memory) B cells, shows that HCL cells are more related to memory cells, suggesting a derivation from this B cell population. Notably, when compared with memory cells, HCL cells displayed a remarkable conservation in proliferation, apoptosis, and DNA metabolism programs, whereas they appeared significantly altered in the expression of genes controlling cell adhesion and response to chemokines. Finally, these analyses have identified several genes that are specifically expressed in HCL and whose expression was confirmed at the protein level by immunocytochemical analysis of primary HCL cases. These results have biological implications relevant to the pathogenesis of this malignancy as well as clinical implications for its diagnosis and therapy.


Blood | 2011

Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?

Brunangelo Falini; Maria Paola Martelli; Niccolo Bolli; Paolo Sportoletti; Arcangelo Liso; Enrico Tiacci; Torsten Haferlach

After the discovery of NPM1-mutated acute myeloid leukemia (AML) in 2005 and its subsequent inclusion as a provisional entity in the 2008 World Health Organization classification of myeloid neoplasms, several controversial issues remained to be clarified. It was unclear whether the NPM1 mutation was a primary genetic lesion and whether additional chromosomal aberrations and multilineage dysplasia had any impact on the biologic and prognostic features of NPM1-mutated AML. Moreover, it was uncertain how to classify AML patients who were double-mutated for NPM1 and CEBPA. Recent studies have shown that: (1) the NPM1 mutant perturbs hemopoiesis in experimental models; (2) leukemic stem cells from NPM1-mutated AML patients carry the mutation; and (3) the NPM1 mutation is usually mutually exclusive of biallelic CEPBA mutations. Moreover, the biologic and clinical features of NPM1-mutated AML do not seem to be significantly influenced by concomitant chromosomal aberrations or multilineage dysplasia. Altogether, these pieces of evidence point to NPM1-mutated AML as a founder genetic event that defines a distinct leukemia entity accounting for approximately one-third of all AML.


Blood | 2011

Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype.

Vera Grossmann; Enrico Tiacci; Antony B. Holmes; Alexander Kohlmann; Maria Paola Martelli; Wolfgang Kern; Ariele Spanhol-Rosseto; Hans-Ulrich Klein; Martin Dugas; Sonja Schindela; Vladimir Trifonov; Susanne Schnittger; Claudia Haferlach; Renato Bassan; Victoria A. Wells; Orietta Spinelli; Joseph Chan; Roberta Rossi; Stefano Baldoni; Luca De Carolis; Katharina Goetze; Hubert Serve; Rudolf Peceny; Karl-Anton Kreuzer; Daniel Oruzio; Giorgina Specchia; Francesco Di Raimondo; Francesco Fabbiano; Marco Sborgia; Arcangelo Liso

Among acute myeloid leukemia (AML) patients with a normal karyotype (CN-AML), NPM1 and CEBPA mutations define World Health Organization 2008 provisional entities accounting for approximately 60% of patients, but the remaining 40% are molecularly poorly characterized. Using whole-exome sequencing of one CN-AML patient lacking mutations in NPM1, CEBPA, FLT3-ITD, IDH1, and MLL-PTD, we newly identified a clonal somatic mutation in BCOR (BCL6 corepressor), a gene located on chromosome Xp11.4. Further analyses of 553 AML patients showed that BCOR mutations occurred in 3.8% of unselected CN-AML patients and represented a substantial fraction (17.1%) of CN-AML patients showing the same genotype as the AML index patient subjected to whole-exome sequencing. BCOR somatic mutations were: (1) disruptive events similar to the germline BCOR mutations causing the oculo-facio-cardio-dental genetic syndrome; (2) associated with decreased BCOR mRNA levels, absence of full-length BCOR, and absent or low expression of a truncated BCOR protein; (3) virtually mutually exclusive with NPM1 mutations; and (4) frequently associated with DNMT3A mutations, suggesting cooperativity among these genetic alterations. Finally, BCOR mutations tended to be associated with an inferior outcome in a cohort of 422 CN-AML patients (25.6% vs 56.7% overall survival at 2 years; P = .032). Our results for the first time implicate BCOR in CN-AML pathogenesis.


Blood | 2012

Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation

Enrico Tiacci; Gianluca Schiavoni; Francesco Forconi; Alessia Santi; Livio Trentin; Achille Ambrosetti; Debora Cecchini; Elisa Sozzi; Paola Francia di Celle; Cristiana Di Bello; Alessandro Pulsoni; Robin Foà; Giorgio Inghirami; Brunangelo Falini

Hairy cell leukemia (HCL) is a distinct clinicopathologic entity that responds well to purine analogs but is sometimes difficult to differentiate from HCL-like disorders (e.g., splenic marginal zone lymphoma and HCL variant). We recently identified the BRAF-V600E mutation as the disease-defining genetic event in HCL. In this study, we describe a new, simple, and inexpensive test for genetics-based diagnosis of HCL in whole-blood samples that detects BRAF-V600E through a sensitive allele-specific PCR qualitative assay followed by agarose-gel electrophoresis. This approach detected BRAF-V600E in all 123 leukemic HCL samples investigated containing as few as 0.1% leukemic cells. BRAF-V600E was detected at different time points during the disease course, even after therapy, pointing to its pivotal role in HCL pathogenesis and maintenance of the leukemic clone. Conversely, 115 non-HCL chronic B-cell neoplasms, including 79 HCL-like disorders, were invariably negative for BRAF-V600E. This molecular assay is a powerful tool for improving the diagnostic accuracy in HCL.


Cancer Cell | 2015

Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

Ramona Crescenzo; Francesco Abate; Elena Lasorsa; Fabrizio Tabbò; Marcello Gaudiano; Nicoletta Chiesa; Filomena Di Giacomo; Elisa Spaccarotella; Luigi Barbarossa; Elisabetta Ercole; Maria Todaro; Michela Boi; Andrea Acquaviva; Elisa Ficarra; Domenico Novero; Andrea Rinaldi; Thomas Tousseyn; Andreas Rosenwald; Lukas Kenner; Lorenzo Cerroni; Alexander Tzankov; Maurilio Ponzoni; Marco Paulli; Dennis D. Weisenburger; Wing C. Chan; Javeed Iqbal; Miguel A. Piris; Alberto Zamò; Carmela Ciardullo; Davide Rossi

A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.


Leukemia | 2009

Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma

S. Eckerle; V. Brune; Claudia Döring; Enrico Tiacci; Verena Bohle; Christer Sundström; R. Kodet; Marco Paulli; Brunangelo Falini; Wolfram Klapper; A. B. Chaubert; Klaus Willenbrock; Dirk Metzler; Andreas Bräuninger; Ralf Küppers; Hansmann Ml

Anaplastic large cell lymphoma (ALCL) is a main type of T-cell lymphomas and comprises three distinct entities: systemic anaplastic lymphoma kinase (ALK) positive, systemic ALK− and cutaneous ALK− ALCL (cALCL). Little is known about their pathogenesis and their cellular origin, and morphological and immunophenotypical overlap exists between ALK− ALCL and classical Hodgkin lymphoma (cHL). We conducted gene expression profiling of microdissected lymphoma cells of five ALK+ and four ALK− systemic ALCL, seven cALCL and sixteen cHL, and of eight subsets of normal T and NK cells. The analysis supports a derivation of ALCL from activated T cells, but the lymphoma cells acquired a gene expression pattern hampering an assignment to a CD4+, CD8+ or CD30+ T-cell origin. Indeed, ALCL display a down-modulation of many T-cell characteristic molecules. All ALCL types show significant expression of NFκB target genes and upregulation of genes involved in oncogenesis (e.g. EZH2). Surprisingly, few genes are differentially expressed between systemic and cALCL despite their different clinical behaviour, and between ALK− ALCL and cHL despite their different cellular origin. ALK+ ALCL are characterized by expression of genes regulated by pathways constitutively activated by ALK. This study provides multiple novel insights into the molecular biology and pathogenesis of ALCL.


Cancer Research | 2004

PAX5 Expression in Acute Leukemias Higher B-Lineage Specificity Than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia

Enrico Tiacci; Stefano Pileri; Annette Orleth; Roberta Pacini; Alessia Tabarrini; Federica Frenguelli; Arcangelo Liso; Daniela Diverio; Francesco Lo-Coco; Brunangelo Falini

The transcription factor PAX5 plays a key role in the commitment of hematopoietic precursors to the B-cell lineage, but its expression in acute leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and myeloid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 T-cell ALLs, including 20 cases aberrantly coexpressing CD79a. Among 160 cytogenetically/molecularly characterized AMLs, PAX5 was selectively detected in 15 of 42 cases bearing the t(8;21)/AML1-ETO rearrangement. Real-time reverse transcription-PCR studies in t(8;21)-AML showed a similar up-regulation of PAX5 transcript in all of the 8 tested samples (including 4 cases that were negative at anti-PAX5 immunostaining), suggesting that PAX5 is expressed in t(8;21)-AML more widely than shown by immunohistochemistry. Interestingly, PAX5+ t(8;21)-AML also expressed CD79a and/or CD19 (major transcriptional targets of PAX5 in B-cells) in 10 of 12 evaluable cases. Our results indicate that PAX5 is a more specific marker than CD79a for B-cell ALL diagnosis. Moreover, among AMLs, PAX5 expression selectively clusters with t(8;21), allowing its immunohistochemical recognition in a proportion of cases, and likely explaining a peculiar biological feature of this subset of myeloid leukemias, i.e. the aberrant expression of B-cell genes.

Collaboration


Dive into the Enrico Tiacci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Küppers

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge