Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique Guzmán-Gutiérrez is active.

Publication


Featured researches published by Enrique Guzmán-Gutiérrez.


Placenta | 2011

Review: Differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes

Luis Sobrevia; Fernando Abarzúa; Jyh K. Nien; Carlos Salomon; Francisco Westermeier; Carlos Puebla; F. Cifuentes; Enrique Guzmán-Gutiérrez; Andrea Leiva; Paola Casanello

Human endothelial dysfunction is a common feature in many diseases of pregnancy, such as gestational diabetes (GD). Metabolic changes include abnormal synthesis of nitric oxide (NO) and abnormal membrane transport of l-arginine and adenosine in primary cultures of human umbilical vein (HUVEC, macrovascular) and placental microvillus (hPMEC, microvascular) endothelial cells. These alterations are associated with modifications in the expression and activity of endothelial (eNOS) and inducible (iNOS) NO synthases, respectively, an effect that is maintained at least up to passage 5 in culture. HUVEC and hPMEC exhibit expression and activity of the human cationic amino acid transporter 1 (hCAT-1), equilibrative nucleoside transporters 1 (hENT1) and hENT2, as well as the corresponding SLC7A1, SLC29A1 and SLC29A2 gene promoter activities. Altered gene expression results from increased NO level, protein kinase C, mitogen-activated protein kinases, and hCHOP-C/EBPα transcription factor activation. Reduced ENT-mediated adenosine transport in GD is associated with stimulation of the l-arginine/NO pathway, and mainly due to reduced expression and activity of hENT1. In addition, hENT2 activity seems able to restore the reduced adenosine transport in GD. Additionally, insulin exerts a differential modulation of endothelial cells from macrocirculation compared with microcirculation, possibly due to expression of different insulin receptor isoforms. It is suggested that a common functional characteristic leading to changes in the bioavailability of adenosine and metabolism of l-arginine is evidenced by human fetal micro and macrovascular endothelium in GD.


Diabetes | 2011

Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

Francisco Westermeier; Carlos Salomon; Marcelo González; Carlos Puebla; Enrique Guzmán-Gutiérrez; Fredi Cifuentes; Andrea Leiva; Paola Casanello; Luis Sobrevia

OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.


PLOS ONE | 2012

Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin

Carlos Salomon; Francisco Westermeier; Carlos Puebla; Pablo Arroyo; Enrique Guzmán-Gutiérrez; Fabián Pardo; Andrea Leiva; Paola Casanello; Luis Sobrevia

Gestational diabetes mellitus (GDM) courses with increased fetal plasma adenosine concentration and reduced adenosine transport in placental macrovascular endothelium. Since insulin modulates human equilibrative nucleoside transporters (hENTs) expression/activity, we hypothesize that GDM will alter hENT2-mediated transport in human placental microvascular endothelium (hPMEC), and that insulin will restore GDM to a normal phenotype involving insulin receptors A (IR-A) and B (IR-B). GDM effect on hENTs expression and transport activity, and IR-A/IR-B expression and associated cell signalling cascades (p42/44 mitogen-activated protein kinases (p42/44mapk) and Akt) role in hPMEC primary cultures was assayed. GDM associates with elevated umbilical whole and vein, but not arteries blood adenosine, and reduced hENTs adenosine transport and expression. IR-A/IR-B mRNA expression and p42/44mapk/Akt ratios (‘metabolic phenotype’) were lower in GDM. Insulin reversed GDM-reduced hENT2 expression/activity, IR-A/IR-B mRNA expression and p42/44mapk/Akt ratios to normal pregnancies (‘mitogenic phenotype’). It is suggested that insulin effects required IR-A and IR-B expression leading to differential modulation of signalling pathways restoring GDM-metabolic to a normal-mitogenic like phenotype. Insulin could be acting as protecting factor for placental microvascular endothelial dysfunction in GDM.


PLOS ONE | 2012

Insulin-Increased L-Arginine Transport Requires A2A Adenosine Receptors Activation in Human Umbilical Vein Endothelium

Enrique Guzmán-Gutiérrez; Francisco Westermeier; Carlos Salomon; Marcelo González; Fabián Pardo; Andrea Leiva; Luis Sobrevia

Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1). This process involves the activation of A2A adenosine receptors (A2AAR) in human umbilical vein endothelial cells (HUVECs). Insulin increases hCAT-1 activity and expression in HUVECs, and A2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C) in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor) and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR), and SLC7A1 (for hCAT-1) reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1−1606 or pGL3-hCAT-1−650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1−1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.


PLOS ONE | 2015

Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

Marcelo González; S. Rojas; Pía Avila; Lissette Cabrera; Roberto Villalobos; Carlos Palma; Claudio Aguayo; Eduardo Peña; Victoria Gallardo; Enrique Guzmán-Gutiérrez; Tamara Sáez; Rocío Salsoso; Carlos Sanhueza; Fabián Pardo; Andrea Leiva; Luis Sobrevia

Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2 •–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2 •– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4 level. Insulin and tempol blocked the high D-glucose–increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2 •–/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Maternal Hypercholesterolemia in Pregnancy Associates With Umbilical Vein Endothelial Dysfunction Role of Endothelial Nitric Oxide Synthase and Arginase II

Andrea Leiva; Camila Diez de Medina; Rocío Salsoso; Tamara Sáez; Sebastián San Martín; Fernando Abarzúa; Marcelo Farías; Enrique Guzmán-Gutiérrez; Fabián Pardo; Luis Sobrevia

Objective—Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelial function in MSPH. The aim of this study was to determine whether MSPH alters fetal vascular reactivity via endothelial arginase/urea and L-arginine transport/NO signaling pathways. Approach and Results—Total cholesterol <280 mg/dL was considered as maternal physiological hypercholesterolemia (n=46 women) and ≥280 mg/dL as MSPH (n=28 women). Maternal but not fetal total cholesterol and low-density lipoprotein-cholesterol levels were elevated in MSPH. Umbilical veins were used for vascular reactivity assays (wire myography), and primary cultures of umbilical vein endothelial cells to determine arginase, endothelial NO synthase (eNOS), and human cationic amino acid transporter 1 and human cationic amino acid transporter 2A/B expression and activity. MSPH reduced calcitonine gene–related peptide-umbilical vein relaxation and increased intima/media ratio (histochemistry), as well as reduced eNOS activity (L-citrulline synthesis from L-arginine, eNOS phosphorylation/dephosphorylation), but increased arginase activity and arginase II protein abundance. Arginase inhibition increased eNOS activity and L-arginine transport capacity without altering human cationic amino acid transporter 1 or human cationic amino acid transporter 2A/B protein abundance in maternal physiological hypercholesterolemia and MSPH. Conclusions—MSPH is a pathophysiological condition altering umbilical vein reactivity because of fetal endothelial dysfunction associated with arginase and eNOS signaling imbalance. We speculate that elevated maternal circulating cholesterol is a factor leading to fetal endothelial dysfunction, which could have serious consequences to the growing fetus.Objective— Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelial function in MSPH. The aim of this study was to determine whether MSPH alters fetal vascular reactivity via endothelial arginase/urea and l-arginine transport/NO signaling pathways. Approach and Results— Total cholesterol <280 mg/dL was considered as maternal physiological hypercholesterolemia (n=46 women) and ≥280 mg/dL as MSPH (n=28 women). Maternal but not fetal total cholesterol and low-density lipoprotein-cholesterol levels were elevated in MSPH. Umbilical veins were used for vascular reactivity assays (wire myography), and primary cultures of umbilical vein endothelial cells to determine arginase, endothelial NO synthase (eNOS), and human cationic amino acid transporter 1 and human cationic amino acid transporter 2A/B expression and activity. MSPH reduced calcitonine gene–related peptide-umbilical vein relaxation and increased intima/media ratio (histochemistry), as well as reduced eNOS activity (l-citrulline synthesis from l-arginine, eNOS phosphorylation/dephosphorylation), but increased arginase activity and arginase II protein abundance. Arginase inhibition increased eNOS activity and l-arginine transport capacity without altering human cationic amino acid transporter 1 or human cationic amino acid transporter 2A/B protein abundance in maternal physiological hypercholesterolemia and MSPH. Conclusions— MSPH is a pathophysiological condition altering umbilical vein reactivity because of fetal endothelial dysfunction associated with arginase and eNOS signaling imbalance. We speculate that elevated maternal circulating cholesterol is a factor leading to fetal endothelial dysfunction, which could have serious consequences to the growing fetus. # Significance {#article-title-49}


The FASEB Journal | 2015

Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium

Francisco Westermeier; Carlos Salomon; Marcelo Farías; Pablo Arroyo; Bárbara Fuenzalida; Tamara Sáez; Rocío Salsoso; Carlos Sanhueza; Enrique Guzmán-Gutiérrez; Fabián Pardo; Andrea Leiva; Luis Sobrevia

Reduced adenosine uptake via human equilibrative nucleoside transporter 1 (hENT1) in human umbilical vein endothelial cells (HUVECs) from gestational diabetes mellitus (GDM) is reversed by insulin by restoring hENT1 expression. Insulin receptors A (IR‐A) and B (IR‐B) are expressed in HUVECs, and GDM results in higher IR‐A mRNA expression vs. cells from normal pregnancies. We studied whether the reversal of GDM effects on transport by insulin depends on restoration of IR‐A expression.We specifically measured hENT1 expression [mRNA, protein abundance, SLC29A1 (for hENT1) promoter activity] and activity (adenosine transport kinetics) and the role of IR‐A/IR‐B expression and signaling [total and phosphorylated 42 and 44 kDa mitogen‐activated protein kinases (p44/42mapk) and Akt] in IR‐A, IR‐B, and IR‐A/B knockdown HUVECs from normal (n = 33) or GDM (n = 33) pregnancies. GDM increases IR‐A/IR‐B mRNA expression (1.8‐fold) and p44/ 42mapk:Akt activity (2.7‐fold) ratios. Insulin reversed GDM‐reduced hENT1 expression and maximal transport capacity(Vmax/Km),andGDM‐increased IR‐A/IR‐B mRNA expression and p44/42mapk:Akt activity ratios to values in normal pregnancies. Insulins effect was abolished in IR‐A or IR‐A/B knockdown cells. Thus, insulin requires normal IR‐A expression and p44/42mapk/Akt signaling to restore GDM‐reduced hENT1 expression and activity in HUVECs. This could be a protective mechanism for the placental macrovascular endothelial dysfunction seen in GDM.‐Westermeier, F., Salomon, C., Farías, M., Arroyo, P., Fuenzalida, B., Sáez, T., Salsoso, R., Sanhueza, C., Guzmán‐Gutiérrez, E., Pardo, F., Leiva, A., Sobrevia, L. Insulin requires normal expression and signaling of insulin receptor A to reverse gestational diabetes‐reduced adenosine transport in human umbilical vein endothelium. FASEB J. 29, 37–49 (2015). www.fasebj.org


Microcirculation | 2014

Role of Insulin and Adenosine in the Human Placenta Microvascular and Macrovascular Endothelial Cell Dysfunction in Gestational Diabetes Mellitus

Enrique Guzmán-Gutiérrez; Pablo Arroyo; Rocío Salsoso; Bárbara Fuenzalida; Tamara Sáez; Andrea Leiva; Fabián Pardo; Luis Sobrevia

Microvascular and macrovascular endothelial function maintains vascular reactivity. Several diseases alter endothelial function, including hypertension, obesity, and diabetes mellitus. In addition, micro‐ and macrovascular endothelial dysfunction is documented in GDM with serious consequences for the growing fetus. Increased l‐arginine uptake via hCAT‐1 and NO synthesis by eNOS is associated with GDM. These alterations are paralleled by activation of purinergic receptors and increased umbilical vein, but not arteries blood adenosine accumulation. GDM associates with NO‐reduced adenosine uptake in placental endothelium, suggested to maintain and/or facilitate insulin vasodilation likely increasing hCAT‐1 and eNOS expression and activity. It is proposed that increased umbilical vein blood adenosine concentration in GDM reflects a defective metabolic state of human placenta. In addition, insulin recovers GDM‐alterations in hCAT‐1 and eNOS in human micro‐ and macrovascular endothelium, and its biological actions depend on preferential activation of insulin receptors A and B restoring a normal‐like from a GDM‐like phenotype. We summarized existing evidence for a potential role of insulin/adenosine/micro‐ and macrovascular endothelial dysfunction in GDM. These mechanisms could be crucial for a better management of the mother, fetus and newborn in GDM pregnancies.


Placenta | 2015

Insulin restores l-arginine transport requiring adenosine receptors activation in umbilical vein endothelium from late-onset preeclampsia

Rocío Salsoso; Enrique Guzmán-Gutiérrez; Tamara Sáez; K. Bugueño; M.A. Ramírez; Marcelo Farías; Fabián Pardo; Andrea Leiva; Carlos Sanhueza; Alfonso Mate; Carmen M. Vázquez; Luis Sobrevia

INTRODUCTION Preeclampsia is associated with impaired placental vasodilation and reduced endothelial nitric oxide synthase (eNOS) activity in the foetoplacental circulation. Adenosine and insulin stimulate vasodilation in endothelial cells, and this activity is mediated by adenosine receptor activation in uncomplicated pregnancies; however, this activity has yet to be examined in preeclampsia. Early onset preeclampsia is associated with severe placental vasculature alterations that lead to altered foetus growth and development, but whether late-onset preeclampsia (LOPE) alters foetoplacental vascular function is unknown. METHODS Vascular reactivity to insulin (0.1-1000 nmol/L, 5 min) and adenosine (1 mmol/L, 5 min) was measured in KCl-preconstricted human umbilical vein rings from normal and LOPE pregnancies using a wire myograph. The protein levels of human cationic amino acid transporter 1 (hCAT-1), adenosine receptor subtypes, total and Ser¹¹⁷⁷- or Thr⁴⁹⁵-phosphorylated eNOS were detected via Western blot, and L-arginine transport (0-1000 μmol/L L-arginine, 3 μCi/mL L-[³H]arginine, 20 s, 37 °C) was measured in the presence or absence of insulin and adenosine receptor agonists or antagonists in human umbilical vein endothelial cells (HUVECs) from normal and LOPE pregnancies. RESULTS LOPE increased the maximal L-arginine transport capacity and hCAT-1 and eNOS expression and activity compared with normal conditions. The A(2A) adenosine receptor (A(2A)AR) antagonist ZM-241385 blocked these effects of LOPE. Insulin-mediated umbilical vein ring relaxation was lower in LOPE pregnancies than in normal pregnancies and was restored using the A(2A)AR antagonist. DISCUSSION AND CONCLUSIONS The reduced foetoplacental vascular response to insulin may result from A(2A)AR activation in LOPE pregnancies.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Maternal Hypercholesterolemia in Pregnancy Associates With Umbilical Vein Endothelial Dysfunction

Andrea Leiva; Camila Diez de Medina; Rocío Salsoso; Tamara Sáez; Sebastián San Martín; Fernando Abarzúa; Marcelo Farías; Enrique Guzmán-Gutiérrez; Fabián Pardo; Luis Sobrevia

Objective—Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelial function in MSPH. The aim of this study was to determine whether MSPH alters fetal vascular reactivity via endothelial arginase/urea and L-arginine transport/NO signaling pathways. Approach and Results—Total cholesterol <280 mg/dL was considered as maternal physiological hypercholesterolemia (n=46 women) and ≥280 mg/dL as MSPH (n=28 women). Maternal but not fetal total cholesterol and low-density lipoprotein-cholesterol levels were elevated in MSPH. Umbilical veins were used for vascular reactivity assays (wire myography), and primary cultures of umbilical vein endothelial cells to determine arginase, endothelial NO synthase (eNOS), and human cationic amino acid transporter 1 and human cationic amino acid transporter 2A/B expression and activity. MSPH reduced calcitonine gene–related peptide-umbilical vein relaxation and increased intima/media ratio (histochemistry), as well as reduced eNOS activity (L-citrulline synthesis from L-arginine, eNOS phosphorylation/dephosphorylation), but increased arginase activity and arginase II protein abundance. Arginase inhibition increased eNOS activity and L-arginine transport capacity without altering human cationic amino acid transporter 1 or human cationic amino acid transporter 2A/B protein abundance in maternal physiological hypercholesterolemia and MSPH. Conclusions—MSPH is a pathophysiological condition altering umbilical vein reactivity because of fetal endothelial dysfunction associated with arginase and eNOS signaling imbalance. We speculate that elevated maternal circulating cholesterol is a factor leading to fetal endothelial dysfunction, which could have serious consequences to the growing fetus.Objective— Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelial function in MSPH. The aim of this study was to determine whether MSPH alters fetal vascular reactivity via endothelial arginase/urea and l-arginine transport/NO signaling pathways. Approach and Results— Total cholesterol <280 mg/dL was considered as maternal physiological hypercholesterolemia (n=46 women) and ≥280 mg/dL as MSPH (n=28 women). Maternal but not fetal total cholesterol and low-density lipoprotein-cholesterol levels were elevated in MSPH. Umbilical veins were used for vascular reactivity assays (wire myography), and primary cultures of umbilical vein endothelial cells to determine arginase, endothelial NO synthase (eNOS), and human cationic amino acid transporter 1 and human cationic amino acid transporter 2A/B expression and activity. MSPH reduced calcitonine gene–related peptide-umbilical vein relaxation and increased intima/media ratio (histochemistry), as well as reduced eNOS activity (l-citrulline synthesis from l-arginine, eNOS phosphorylation/dephosphorylation), but increased arginase activity and arginase II protein abundance. Arginase inhibition increased eNOS activity and l-arginine transport capacity without altering human cationic amino acid transporter 1 or human cationic amino acid transporter 2A/B protein abundance in maternal physiological hypercholesterolemia and MSPH. Conclusions— MSPH is a pathophysiological condition altering umbilical vein reactivity because of fetal endothelial dysfunction associated with arginase and eNOS signaling imbalance. We speculate that elevated maternal circulating cholesterol is a factor leading to fetal endothelial dysfunction, which could have serious consequences to the growing fetus. # Significance {#article-title-49}

Collaboration


Dive into the Enrique Guzmán-Gutiérrez's collaboration.

Top Co-Authors

Avatar

Luis Sobrevia

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Andrea Leiva

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Fabián Pardo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Arroyo

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Paola Casanello

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Rocío Salsoso

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Carlos Puebla

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Tamara Sáez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

Fernando Abarzúa

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge