Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique M. De La Cruz is active.

Publication


Featured researches published by Enrique M. De La Cruz.


Science | 2012

Actin Network Architecture Can Determine Myosin Motor Activity

Anne-Cécile Reymann; Rajaa Boujemaa-Paterski; Jean-Louis Martiel; Christophe Guérin; Wenxiang Cao; Harvey F. Chin; Enrique M. De La Cruz; Manuel Théry; Laurent Blanchoin

Actin Up Actomyosin interactions lie at the heart of fundamental cellular processes—including morphogenesis, establishment of polarity, and overall motility—but the general principles driving the spatiotempotal orchestration of these interactions have remained elusive. Working in vitro, using micropatterned substrates, Reymann et al. (p. 1310) demonstrate that myosins can use a “selection orientation” mechanism to pull selectively on actin filaments, contract the actin network and disassemble it, or walk on the filaments, align them, allow their growth, and control filament orientation. Myosin crumples up antiparallel actin fibers and leaves parallel bundles intact. The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This “orientation selection” mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.


Nature Structural & Molecular Biology | 2004

Mechanochemical coupling of two substeps in a single myosin V motor.

Sotaro Uemura; Hideo Higuchi; Adrian O. Olivares; Enrique M. De La Cruz; Shin'ichi Ishiwata

Myosin V is a double-headed processive molecular motor that moves along an actin filament by taking 36-nm steps. Using optical trapping nanometry with high spatiotemporal resolution, we discovered that there are two possible pathways for the 36-nm steps, one with 12- and 24-nm substeps, in this order, and the other without substeps. Based on the analyses of effects of ATP, ADP and 2,3-butanedione 2-monoxime (a reagent shown here to slow ADP release from actomyosin V) on the dwell time and the occurrence frequency of the main and the intermediate states, we propose that the 12-nm substep occurs after ATP binding to the bound trailing head and the 24-nm substep results from a mechanical step following the isomerization of an actomyosin-ADP state on the bound leading head. When the isomerization precedes the 12-nm substep, the 36-nm step occurs without substeps.


Cell | 2008

The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes

Yiying Cai; Harvey F. Chin; Darina L. Lazarova; Shekar Menon; Chunmei Fu; Huaqing Cai; Anthony Sclafani; David W. Rodgers; Enrique M. De La Cruz; Susan Ferro-Novick; Karin M. Reinisch

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Journal of Molecular Biology | 2008

Cofilin Increases the Bending Flexibility of Actin Filaments: Implications for Severing and Cell Mechanics

Brannon R. McCullough; Laurent Blanchoin; Jean Louis Martiel; Enrique M. De La Cruz

We determined the flexural (bending) rigidities of actin and cofilactin filaments from a cosine correlation function analysis of their thermally driven, two-dimensional fluctuations in shape. The persistence length of actin filaments is 9.8 microm, corresponding to a flexural rigidity of 0.040 pN microm(2). Cofilin binding lowers the persistence length approximately 5-fold to a value of 2.2 microm and the filament flexural rigidity to 0.0091 pN microm(2). That cofilin-decorated filaments are more flexible than native filaments despite an increased mass indicates that cofilin binding weakens and redistributes stabilizing subunit interactions of filaments. We favor a mechanism in which the increased flexibility of cofilin-decorated filaments results from the linked dissociation of filament-stabilizing ions and reorganization of actin subdomain 2 and as a consequence promotes severing due to a mechanical asymmetry. Knowledge of the effects of cofilin on actin filament bending mechanics, together with our previous analysis of torsional stiffness, provide a quantitative measure of the mechanical changes in actin filaments associated with cofilin binding, and suggest that the overall mechanical and force-producing properties of cells can be modulated by cofilin activity.


Current Biology | 2011

Cofilin Tunes the Nucleotide State of Actin Filaments and Severs at Bare and Decorated Segment Boundaries

Cristian Suarez; Jeremy Roland; Rajaa Boujemaa-Paterski; Hyeran Kang; Brannon R. McCullough; Anne-Cécile Reymann; Christophe Guérin; Jean-Louis Martiel; Enrique M. De La Cruz; Laurent Blanchoin

Actin-based motility demands the spatial and temporal coordination of numerous regulatory actin-binding proteins (ABPs), many of which bind with affinities that depend on the nucleotide state of actin filament. Cofilin, one of three ABPs that precisely choreograph actin assembly and organization into comet tails that drive motility in vitro, binds and stochastically severs aged ADP actin filament segments of de novo growing actin filaments. Deficiencies in methodologies to track in real time the nucleotide state of actin filaments, as well as cofilin severing, limit the molecular understanding of coupling between actin filament chemical and mechanical states and severing. We engineered a fluorescently labeled cofilin that retains actin filament binding and severing activities. Because cofilin binding depends strongly on the actin-bound nucleotide, direct visualization of fluorescent cofilin binding serves as a marker of the actin filament nucleotide state during assembly. Bound cofilin allosterically accelerates P(i) release from unoccupied filament subunits, which shortens the filament ATP/ADP-P(i) cap length by nearly an order of magnitude. Real-time visualization of filament severing indicates that fragmentation scales with and occurs preferentially at boundaries between bare and cofilin-decorated filament segments, thereby controlling the overall filament length, depending on cofilin binding density.


Journal of Molecular Biology | 2008

The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA.

Arnon Henn; Wenxiang Cao; David D. Hackney; Enrique M. De La Cruz

DEAD-box proteins are ATPase enzymes that destabilize and unwind duplex RNA. Quantitative knowledge of the ATPase cycle parameters is critical for developing models of helicase activity. However, limited information regarding the rate and equilibrium constants defining the ATPase cycle of RNA helicases is available, including the distribution of populated biochemical intermediates, the catalytic step(s) that limits the enzymatic reaction cycle, and how ATP utilization and RNA interactions are linked. We present a quantitative kinetic and equilibrium characterization of the ribosomal RNA (rRNA)-activated ATPase cycle mechanism of DbpA, a DEAD-box rRNA helicase implicated in ribosome biogenesis. rRNA activates the ATPase activity of DbpA by promoting a conformational change after ATP binding that is associated with hydrolysis. Chemical cleavage of bound ATP is reversible and occurs via a gamma-phosphate attack mechanism. ADP-P(i) and RNA binding display strong thermodynamic coupling, which causes DbpA-ADP-P(i) to bind rRNA with >10-fold higher affinity than with bound ATP, ADP or in the absence of nucleotide. The rRNA-activated steady-state ATPase cycle of DbpA is limited both by ATP hydrolysis and by P(i) release, which occur with comparable rates. Consequently, the predominantly populated biochemical states during steady-state cycling are the ATP- and ADP-P(i)-bound intermediates. Thermodynamic linkage analysis of the ATPase cycle transitions favors a model in which rRNA duplex destabilization is linked to strong rRNA and nucleotide binding. The presented analysis of the DbpA ATPase cycle reaction mechanism provides a rigorous kinetic and thermodynamic foundation for developing testable hypotheses regarding the functions and molecular mechanisms of DEAD-box helicases.


Methods in Enzymology | 2009

KINETIC AND EQUILIBRIUM ANALYSIS OF THE MYOSIN ATPase

Enrique M. De La Cruz; E. Michael Ostap

The myosin superfamily consists of more than 35 classes (each consisting of multiple isoforms) that have diverse cellular activities. The reaction pathway of the actin-activated myosin ATPase appears to be conserved for all myosin isoforms, but the rate and equilibrium constants that define the ATPase pathway vary significantly across the myosin superfamily, resulting in kinetic differences that that allow myosins to carry out diverse mechanical functions. Therefore, it is important to determine the lifetimes and relative populations of the key biochemical intermediates to obtain an understanding of a particular myosins cellular function. This chapter provides procedures for determining the overall and individual rate and equilibrium constants of the actomyosin ATPase cycle, including actomyosin binding and dissociation, ATP binding, ATP hydrolysis, phosphate release, and ADP release and binding. Many of the methods described in the chapter are applicable to the characterization of other ATPase enzymes.


Biophysical Journal | 2011

Cofilin-Linked Changes in Actin Filament Flexibility Promote Severing

Brannon R. McCullough; Elena E. Grintsevich; Christine K. Chen; Hyeran Kang; Alan L. Hutchison; Arnon Henn; Wenxiang Cao; Cristian Suarez; Jean Louis Martiel; Laurent Blanchoin; Emil Reisler; Enrique M. De La Cruz

The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.


Biophysical Reviews | 2009

How cofilin severs an actin filament

Enrique M. De La Cruz

The actin regulatory protein, cofilin, promotes actin assembly dynamics by severing filaments and increasing the number of ends from which subunits add and dissociate. Recent studies provide biophysical descriptions of cooperative filament interactions in energetic, mechanical and structural terms. A one-dimensional Ising model with nearest-neighbor interactions permits thermodynamic analysis of cooperative binding and indicates that one or a few cofilin molecules can sever a filament. Binding and cooperative interactions are entropically driven. A significant fraction of the binding free energy results from the linked dissociation of filament-associated ions (polyelectrolyte effect), which modulate filament structure, stability and mechanics. The remaining binding free energy and essentially all of the cooperative free energy arise from the enhanced conformational dynamics of the cofilactin complex. Filament mechanics are modulated by cofilin such that cofilin-saturated filaments are approximately 10- to 20-fold more compliant in bending and twisting than bare filaments. Cofilin activity is well described by models in which discontinuities in topology, mechanics and conformational dynamics generate stress concentration and promote fracture at junctions of bare and decorated segments, analogous to the grain boundary fracture of crystalline materials and the thermally driven formation of shear transformation zones in colloidal glass.The actin regulatory protein, cofilin, promotes actin assembly dynamics by severing filaments and increasing the number of ends from which subunits add and dissociate. Recent studies provide biophysical descriptions of cooperative filament interactions in energetic, mechanical and structural terms. A one-dimensional Ising model with nearest-neighbor interactions permits thermodynamic analysis of cooperative binding and indicates that one or a few cofilin molecules can sever a filament. Binding and cooperative interactions are entropically driven. A significant fraction of the binding free energy results from the linked dissociation of filament-associated ions (polyelectrolyte effect), which modulate filament structure, stability and mechanics. The remaining binding free energy and essentially all of the cooperative free energy arise from the enhanced conformational dynamics of the cofilactin complex. Filament mechanics are modulated by cofilin such that cofilin-saturated filaments are approximately 10- to 20-fold more compliant in bending and twisting than bare filaments. Cofilin activity is well described by models in which discontinuities in topology, mechanics and conformational dynamics generate stress concentration and promote fracture at junctions of bare and decorated segments, analogous to the grain boundary fracture of crystalline materials and the thermally driven formation of shear transformation zones in colloidal glass.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function

Yusuke Oguchi; Sergey V. Mikhailenko; Takashi Ohki; Adrian O. Olivares; Enrique M. De La Cruz; Shin'ichi Ishiwata

Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a “hand-over-hand” fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrically affect ADP affinity, such that ADP binds weaker under loads assisting motility. Model-based analysis reveals that forward and backward loads modulate the kinetics of ADP binding to both myosins, although the effect is less pronounced for myosin VI. ADP dissociation is modestly accelerated by forward loads and inhibited by backward loads. Loads applied in either direction slow ADP binding to myosin V but accelerate binding to myosin VI. We calculate that the intramolecular load generated during processive stepping is ≈2 pN for both myosin V and myosin VI. The distinct load dependence of ADP binding allows these motors to perform different cellular functions.

Collaboration


Dive into the Enrique M. De La Cruz's collaboration.

Top Co-Authors

Avatar

Adrian O. Olivares

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge