Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrique Nebot is active.

Publication


Featured researches published by Enrique Nebot.


Chemical Engineering Journal | 2001

Kinetic comparison between subcritical and supercritical water oxidation of phenol

Juan R. Portela; Enrique Nebot; E.J. Martínez de la Ossa

Wet air oxidation (WAO) and supercritical water oxidation (SCWO) processes have been studied by numerous researchers, proving their effectiveness to treat a wide variety of wastes and presenting the kinetics involved in each case. As a result, a substantial amount of kinetic information describing organic reactions in those environments has been accumulated. In most cases, predictions from kinetics models obtained below and above the critical point of water are completely different. Furthermore, predictions from kinetic expressions obtained in the same range of operating conditions vary considerably. Phenol is a model pollutant that has been the subject of numerous studies both in subcritical and supercritical conditions. In this work, both batch and continuous flow reactors have been used to compare the kinetics obtained for phenol oxidation at subcritical and supercritical conditions. Moreover, most of the rate expressions available in the literature have been compared in order to find the reasons for the discrepancies found.


Journal of Hazardous Materials | 2001

Elimination of cutting oil wastes by promoted hydrothermal oxidation

Juan R. Portela; J. López; Enrique Nebot; E.J. Martínez de la Ossa

Cutting oils are emulsionable fluids widely used in metalworking processes. Their composition is normally oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Generally, it is a waste too dilute to be incinerated and it is difficult to treat biologically. Other conventional treatment methods currently used are not satisfactory from the environmental point of view. Wet air oxidation (WAO) and supercritical water oxidation (SCWO) are two forms of hydrothermal oxidation that have been proved to be effective processes to treat a wide variety of industrial wastes, but hardly tested for oily wastes. In the case of refractory wastes, WAO process is not efficient enough due to the moderate temperatures used. SCWO is a more powerful process since operating temperatures are usually around 600 degrees C, but the use of severe conditions leads to major disadvantages in the commercialization of the technology. In order to enhance WAO and SCWO efficiency at mild conditions, the use of free radical promoters has been studied in this work. Both normal and promoted hydrothermal oxidation have been tested to treat cutting oil wastes in a continuous flow system operating at 300-500 degrees C. Hydrogen peroxide has been used both as a source of oxygen and as a source of free radicals by introducing it into the reactor with or without previous thermal decomposition, respectively. Organic material is easily oxidized in both cases, obtaining more than 90% TOC reduction in less than 10s at 500 degrees C. At lower temperatures, the use of promoters clearly enhances the oxidation process. Activation energies have been estimated for normal and promoted oxidation processes.


Water Research | 2013

Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

D. Rubio; Enrique Nebot; José F. Casanueva; Cesar Pulgarin

Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the disinfection of seawater, in spite its high concentration of salts.


Chemosphere | 2010

Biomarker responses in Solea senegalensis exposed to sodium hypochlorite used as antifouling

Cristina López-Galindo; Luis Vargas-Chacoff; Enrique Nebot; José F. Casanueva; Daniel Rubio; Montserrat Solé; Juan Miguel Mancera

The time-course stress responses (0, 1, 2, and 7 d) was assessed in plasmatic, branchial and renal parameters of juveniles Solea senegalensis exposed to different concentrations of the antifouling sodium hypochlorite (0.1, 0.2, and 0.5mgL(-1)). These stress responses were only assessed for the total length of exposure (7d) at the lowest NaClO concentration due to the high toxicity of this chemical. In addition, the xenobiotic metabolism responses were evaluated by means of enzymatic activities of ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and carboxylesterase (CbE) in liver; as well as GST, GPX, CAT and acetylcholinesterase (AChE) in gill. Oxidative stress damage due to sodium hypochlorite exposure was measured by lipid peroxidation levels in liver and gill. Concentrations of 0.2 and 0.5mgL(-1) produced lethal effects after 1d and 2h of exposure, respectively. After 1d of exposure to sublethal concentration of sodium hypochlorite (0.1mgL(-1)) osmoregulatory (osmolality and chloride) and stress (cortisol, glucose and lactate) plasmatic parameters were enhanced to respect at control fish. However after 3 or 7d these parameters returned to control values. No effects were observed on plasma protein and triglyceride levels or on gill and kidney Na(+)/K(+)-ATPase activities. Diverse gill pathologies such as hypertrophy, lamellar fusion and an increase in goblet cell number and size were observed after 7d of exposure. Most biochemical parameters related to xenobiotic metabolism and oxidative stress were also significantly affected which suggests that seawater affected by sodium hypochlorite discharges from power plants, is able to alter the fish xenobiotic metabolism and generate oxidative stress.


Environmental Science & Technology | 2012

Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment.

Jose Abelleira; S.I. Pérez-Elvira; Juan R. Portela; J. Sánchez-Oneto; Enrique Nebot

The aim of this work was to study in depth the behavior and optimization of a novel process, called advanced thermal hydrolysis (ATH), to determine its utility as a pretreatment (sludge solubilization) or postreatment (organic matter removal) for anaerobic digestion (AD) in the sludge line of wastewater treatment plants (WWTPs). ATH is based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H(2)O(2)) addition and takes advantage of a peroxidation/direct steam injection synergistic effect. On the basis of the response surface methodology (RSM) and a modified Doehlert design, an empirical second-order polynomial model was developed for the total yield of: (a) disintegration degree [DD (%)] (solubilization), (b) filtration constant [F(c) (cm(2)/min)] (dewaterability), and (c) organic matter removal (%). The variables considered were operation time (t), temperature reached after initial heating (T), and oxidant coefficient (n = oxygen(supplied)/oxygen(stoichiometric)). As the model predicts, in the case of the ATH process with high levels of oxidant, it is possible to achieve an organic matter removal of up to 92%, but the conditions required are prohibitive on an industrial scale. ATH operated at optimal conditions (oxygen amount 30% of stoichiometric, 115 °C and 24 min) gave promising results as a pretreatment, with similar solubilization and markedly better dewaterability levels in comparison to those obtained with TH at 170 °C. The empirical validation of the model was satisfactory.


Science of The Total Environment | 2010

Degradation models and ecotoxicity in marine waters of two antifouling compounds: Sodium hypochlorite and an alkylamine surfactant

Cristina López-Galindo; M. Carmen Garrido; José F. Casanueva; Enrique Nebot

Industrial wastes have a substantial impact on coastal environments. Therefore, to evaluate the impact of cooling water discharges from coastal power plants, we studied the kinetics of the degradative processes and the ecotoxicity of two antifouling products: (1) a classic antifouling product; sodium hypochlorite (NaClO) and (2) an alternative one; aliphatic amines (commercial under the registered trade mark Mexel432). To assess the persistence of both compounds the decay of sodium hypochlorite and the primary biodegradation rate of Mexel432 were determined in natural seawater at 20 degrees C. The results indicated a more rapid decay of NaClO than Mexel432. The degradation behavior of both chemicals was described following a logistic model, which permitted calculating kinetic parameters such as t(50) or t(90). The t(50) was 1h and 2d for NaClO and Mexel432, respectively. To evaluate the potential risks of the aforementioned treatments to marine organisms, the acute toxicity of both antifouling products was studied on the microalgae Isochrysis galbana and Dunaliella salina, and on the invertebrate Brachionus plicatilis, using growth inhibition and death tests as toxic response, respectively. For I. galbana, the 96-h EC(50) values were 2.91+/-0.15mg/L of NaClO and 4.55+/-0.11mg/L of Mexel432. D. salina showed values of 96-h EC(50) of 1.73+/-0.16mg/L of NaClO and 7.21+/-0.1mg/L of Mexel432. Brachionus plicatilis showed a 24-h LC(50) of 1.23+/-0.1mg/L of NaClO and 3.62+/-0.37mg/L of Mexel432. Acute toxicity was highly dependent on the chemical and species tested. NaClO presented more toxic effects than Mexel432, also B. plicatilis was the most sensitive species in both cases. The lowest NOECs obtained, 0.25mg/L for NaClO and 2.12mg/L for Mexel432, were similar to the theoretical residual concentrations of these biocides in cooling water discharges. Therefore, these discharges can cause undesirable negative effects upon the aquatic organisms present.


Biofouling | 2010

Efficacy of different antifouling treatments for seawater cooling systems

Cristina López-Galindo; José F. Casanueva; Enrique Nebot

In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel®432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (ΔR max). The apparent thermal conductivity (λ) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties.


Bioresource Technology | 1997

Colonisation of a porous sintered-glass support in anaerobic thermophilic bioreactors

M. Pérez; L.I. Romero; Enrique Nebot; D. Sales

Abstract Biofilm development in an open-pore sintered-glass material (SIRAN) was studied using a laboratory-scale, anaerobic fixed-film reactor under thermophilic conditions. The start-up and performance of this reactor, operating on distillery wastewater feed (vinasses), were also studied. Stepped organic loading during initial reactor start-up reduced the periods of adaptation in the colonisation process and micro-organism attachment, and biofilm formation was accelerated by the surface characteristics of the carrier. The results obtained by operating with stepped organic loading (3.81 kg COD/m3/day) over a period of 75 days suggest that a stable operation of the process (80% COD removal) and high density of biomass immobilised on the support (89.26 g VSatt/m3 SIRAN) was achieved. Epifluorescence microscopy demonstrated that, initially, attached growth developed in crevices where biomass was protected from shear forces and, finally, SIRAN was completely covered and biofilm developed on the entire SIRAN particles. The support, under anaerobic thermophilic conditions, due to its properties of low density, high porosity and specific area, is suitable for the immobilisation of slow-growing micro-organisms (e.g. anaerobic thermophilic organisms), and is especially adequate as a support for anaerobic fluidised beds for the treatment of high-rate organic loads.


Ecotoxicology and Environmental Safety | 2010

Sublethal responses of the common mussel (Mytilus galloprovincialis) exposed to sodium hypochlorite and Mexel®432 used as antifoulants.

Cristina López-Galindo; Luis Vargas-Chacoff; Enrique Nebot; José F. Casanueva; Daniel Rubio; Juan Miguel Mancera; Montserrat Solé

The sublethal effects of two antifoulants currently used in power plant cooling systems were assessed in the common mussel Mytilus galloprovincialis. The concentrations of sodium hypochlorite (NaClO) and an alkyl amine surfactant (Mexel432) assayed, were within the range of those currently discharged by power plants into receiving waters. Enzymatic activities and oxidative stress responses were measured in digestive gland and gill of mussels after 1, 3, 7 and 14 days of exposure, as well as histopathology in gill tissue. Both antifoulants caused a pathological response in gills and the activities of the enzymes glutathione S-transferase, catalase, acetylcholinesterase and the lipid peroxidation levels were also affected. Exposure to NaClO caused a greater toxicological response than Mexel432. In both treatments, gills appeared to be the most affected tissue, although Mexel432 also significantly affected digestive gland parameters.


Chemosphere | 2010

Sublethal effects of the organic antifoulant Mexel® 432 on osmoregulation and xenobiotic detoxification in the flatfish Solea senegalensis

Cristina López-Galindo; Luis Vargas-Chacoff; Enrique Nebot; José F. Casanueva; Daniel Rubio; Montserrat Solé; Juan Miguel Mancera

Mexel(R)432 is an anionic surfactant used as biocide in the cooling water system of power plants for biofouling reduction. Refrigeration waters from power plants do not usually follow, prior to their discharge to sea, any treatment aimed to eliminate biocides and this can have negative consequences on the aquatic fauna nearby. The effects of different concentrations of the antifoulant Mexel(R)432 (0.5, 1 and 2mgL(-1)) on osmoregulation (osmolality and Na(+)/K(+)-ATPase activity) and stress parameters (cortisol, glucose, and lactate) were assessed in juveniles of the flatfish Solea senegalensis. Gill histopathology and alterations due to oxidative stress (increased lipid peroxidation, LPO, levels) at branchial and hepatic levels were also considered. Other parameters tested were the antioxidant enzymes (catalase, CAT; glutathione peroxidase, GPX; and glutathione reductase, GR), xenobiotic metabolism defenses involved in detoxification (carboxylesterase, CbE; 7-ethoxyresorufin O-deethylase, EROD; and glutathione S-transferase, GST) and the neurotransmitter acetylcholinesterase (AChE) activity. Significant variations in osmoregulatory parameters, histological lesions and decreased branchial Na(+)/K(+)-ATPase activity were observed in exposed fish. Other gill biomarkers presented little or no significant variations in relation to controls. In contrast, hepatic parameters, such as CAT activity, were inhibited while EROD activity was initially elevated but after longer exposures it recovered basal values. These results suggested that under our experimental protocol exists toxic associated to Mexel(R)432 exposures.

Collaboration


Dive into the Enrique Nebot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Sales

University of Cádiz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge