Enrique Valencia
King Juan Carlos University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enrique Valencia.
Science | 2012
Fernando T. Maestre; José L. Quero; Nicholas J. Gotelli; Adrián Escudero; Victoria Ochoa; Manuel Delgado-Baquerizo; Miguel García-Gómez; Matthew A. Bowker; Santiago Soliveres; Cristina Escolar; Pablo García-Palacios; Miguel Berdugo; Enrique Valencia; Beatriz Gozalo; Antonio Gallardo; Lorgio E. Aguilera; Tulio Arredondo; Julio Blones; Bertrand Boeken; Donaldo Bran; Abel Augusto Conceição
Global Ecosystem Analysis The relationship between species richness and the functional properties of their ecosystems has often been studied at small scales in experimental plots. Maestre et al. (p. 214; see the Perspective by Midgley) performed field measurements at 224 dryland sites from six continents and assessed 14 ecosystem functions related to carbon, nitrogen, and phosphorus cycling. Positive relationships were observed between perennial plant species richness and ecosystem functionality. The relative importance of biodiversity was found to be as large as, or larger than, many key abiotic variables. Thus, preservation of plant biodiversity is important to buffer negative effects of climate change and desertification in drylands, which collectively cover 41% of Earths land surface and support over 38% of the human population. Plant species richness is positively related to ecosystem multifunctionality in drylands at a global scale. Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Nature | 2013
Manuel Delgado-Baquerizo; Fernando T. Maestre; Antonio Gallardo; Matthew A. Bowker; Matthew D. Wallenstein; José L. Quero; Victoria Ochoa; Beatriz Gozalo; Santiago Soliveres; Miguel Berdugo; Enrique Valencia; Cristina Escolar; Tulio Arredondo; Claudia Barraza-Zepeda; Donaldo Bran; Mohamed Chaieb; Mchich Derak; David J. Eldridge; Carlos I. Espinosa; M. Gabriel Gatica; Elizabeth Guzman; Adriana Florentino; Estela Hepper; Elisabeth Huber-Sannwald; Mohammad Jankju; Jushan Liu; Rebecca L. Mau; Maria N. Miriti; Jorge Monerris; Kamal Naseri
The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.
Journal of Biogeography | 2014
Werner Ulrich; Santiago Soliveres; Fernando T. Maestre; Nicholas J. Gotelli; José L. Quero; Manuel Delgado-Baquerizo; Matthew A. Bowker; David J. Eldridge; Victoria Ochoa; Beatriz Gozalo; Enrique Valencia; Miguel Berdugo; Cristina Escolar; Miguel García-Gómez; Adrián Escudero; Aníbal Prina; Graciela L Alfonso; Tulio Arredondo; Donaldo Bran; Alex P. Cea; Mohamed Chaieb; Jorge Contreras; Mchich Derak; Carlos I. Espinosa; Adriana Florentino; Juan J. Gaitán; Victoria García Muro; Wahida Ghiloufi; Susana Gómez-González; Julio R. Gutiérrez
AIM Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. LOCATION 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. METHODS Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittakes beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. RESULTS Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). MAIN CONCLUSIONS Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
PLOS ONE | 2013
Manuel Delgado-Baquerizo; Fernando T. Maestre; Antonio Gallardo; José L. Quero; Victoria Ochoa; Miguel García-Gómez; Cristina Escolar; Pablo García-Palacios; Miguel Berdugo; Enrique Valencia; Beatriz Gozalo; Zouhaier Noumi; Mchich Derak; Matthew D. Wallenstein
While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region.
Journal of Ecology | 2017
Yoann Le Bagousse-Pinguet; Nicolas Gross; Fernando T. Maestre; Vincent Maire; Francesco de Bello; Carlos Fonseca; Jens Kattge; Enrique Valencia; Jan Lepš; Pierre Liancourt
1. The environmental filtering hypothesis predicts that the abiotic environment selects species with similar trait values within communities. Testing this hypothesis along multiple - and interacting - gradients of climate and soil variables constitutes a great opportunity to better understand and predict the responses of plant communities to ongoing environmental changes. 2. Based on two key plant traits, maximum plant height and specific leaf area (SLA), we assessed the filtering effects of climate (mean annual temperature and precipitation, precipitation seasonality), soil characteristics (soil pH, sand content and total phosphorus) and all potential interactions on the functional structure and diversity of 124 dryland communities spread over the globe. The functional structure and diversity of dryland communities were quantified using the mean, variance, skewness and kurtosis of plant trait distributions. 3. The models accurately explained the observed variations in functional trait diversity across the 124 communities studied. All models included interactions among factors, i.e. climate - climate (9% of explanatory power), climate - soil (24% of explanatory power) and soil - soil interactions (5% of explanatory power). Precipitation seasonality was the main driver of maximum plant height, and interacted with mean annual temperature and precipitation. Soil pH mediated the filtering effects of climate and sand content on SLA. Our results also revealed that communities characterized by a low variance can also exhibit low kurtosis values, indicating that functionally contrasting species can co-occur even in communities with narrow ranges of trait values. 4. Synthesis We identified the particular set of conditions under which the environmental filtering hypothesis operates in drylands worldwide. Our findings also indicate that species with functionally contrasting strategies can still co-occur locally, even under prevailing environmental filtering. Interactions between sources of environmental stress should be therefore included in global trait-based studies, as this will help to further anticipate where the effects of environmental filtering will impact plant trait diversity under climate change.
Journal of Ecology | 2018
Raúl Ochoa-Hueso; David J. Eldridge; Manuel Delgado-Baquerizo; Santiago Soliveres; Matthew A. Bowker; Nicolas Gross; Yoann Le Bagousse-Pinguet; José L. Quero; Miguel García-Gómez; Enrique Valencia; Tulio Arredondo; Laura Beinticinco; Donaldo Bran; Alex P. Cea; Daniel Coaguila; Andrew J. Dougill; Carlos I. Espinosa; Juan J. Gaitán; Reginald T. Guuroh; Elizabeth Guzman; Julio R. Gutiérrez; Rosa M. Hernández; Elisabeth Huber-Sannwald; Thomas C. Jeffries; Anja Linstädter; Rebecca L. Mau; Jorge Monerris; Aníbal Prina; Eduardo Pucheta; Ilan Stavi
Dryland vegetation is characterized by discrete plant patches that accumulate and capture soil resources under their canopies. These “fertile islands” are major drivers of dryland ecosystem structure and functioning, yet we lack an integrated understanding of the factors controlling their magnitude and variability at the global scale. We conducted a standardized field survey across 236 drylands from five continents. At each site, we measured the composition, diversity and cover of perennial plants. Fertile island effects were estimated at each site by comparing composite soil samples obtained under the canopy of the dominant plants and in open areas devoid of perennial vegetation. For each sample, we measured 15 soil variables (functions) associated with carbon, nitrogen and phosphorus cycling and used the relative interaction index to quantify the magnitude of the fertile island effect for each function. In 80 sites, we also measured fungal and bacterial abundance (quantitative PCR) and diversity (Illumina MiSeq). The most fertile islands, i.e. those where a higher number of functions were simultaneously enhanced, were found at lower elevation sites with greater soil pH values and sand content under semiarid climates, particularly at locations where the presence of tall woody species with a low-specific leaf area increased fungal abundance beneath plant canopies, the main direct biotic controller of the fertile island effect in the drylands studied. Positive effects of fungal abundance were particularly associated with greater nutrient contents and microbial activity (soil extracellular enzymes) under plant canopies. Synthesis. Our results show that the formation of fertile islands in global drylands largely depends on: (1) local climatic, topographic and edaphic characteristics, (2) the structure and traits of local plant communities and (3) soil microbial communities. Our study also has broad implications for the management and restoration of dryland ecosystems worldwide, where woody plants are commonly used as nurse plants to enhance the establishment and survival of beneficiary species. Finally, our results suggest that forecasted increases in aridity may enhance the formation of fertile islands in drylands worldwide.
Archive | 2016
Fernando T. Maestre; Matthew A. Bowker; David J. Eldridge; Jordi Cortina; Roberto Lázaro; Antonio Gallardo; Manuel Delgado-Baquerizo; Miguel Berdugo; Andrea P. Castillo-Monroy; Enrique Valencia
We explore in this chapter how biological soil crusts (biocrusts) may serve as a useful model system for studying multiple questions of interest in ecology, including biodiversity–ecosystem function relationships, positive and negative species interactions along environmental gradients, the source–sink hydrological dynamics in drylands, and ecosystem resistance and resilience. To illustrate our views, we synthesize recent and ongoing studies that are employing biocrusts as model systems to tackle these and other related questions, emphasizing the main features of biocrusts that make them special and well suited to advance ecological theory and our understanding of many important topics in community and ecosystem ecology. We complete the synthesis of the studies conducted so far with recommendations aiming to promote the use of biocrusts by community and ecosystem ecologists.
Global Change Biology | 2018
Enrique Valencia; Nicolas Gross; José L. Quero; Carlos Carmona; Victoria Ochoa; Beatriz Gozalo; Manuel Delgado-Baquerizo; Kenneth Dumack; Kelly Hamonts; Brajesh K. Singh; Michael Bonkowski; Fernando T. Maestre
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
Revista Ecosistemas | 2016
Enrique Valencia
Puerta-Pinero, A. 2016. Identification and evaluation of afforestations through the Spanish National Forest Inventory. Ecosistemas 25(3): 43-50. Doi.: 10.7818/ECOS.2016.25-3.05 Afforestation programs in Spain were performed mainly between 1930-1970 decades. The study of the state and functioning of these anthropogenic forests has a wide debate among scientists and stakeholders. Forest inventories represent a crucial source of data to evaluate the long-term functioning of these forests at broad spatial scales. This article shows several tools to identify and select plots from the third Spanish Forest Inventory composed by uniform afforestations. The functions intend to facilitate the work of scientists and technicians whose objective could be influenced by the presence or absence of these artificial forest type. Those functions are a first attempt to include or exclude plots that are composed by artificially afforested forests. I also present some preliminary results, and discuss strengths, weaknesses and future directions relative to the use of these functions.
New Phytologist | 2015
Enrique Valencia; Fernando T. Maestre; Yoann Le Bagousse-Pinguet; José L. Quero; Riin Tamme; Luca Börger; Miguel García-Gómez; Nicolas Gross