Enrique Villamor
Florida International University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Enrique Villamor.
Bulletin of the American Mathematical Society | 1995
Juan J. Manfredi; Enrique Villamor
Let F ∈ W 1 , n loc (Ω ; R ) be a mapping with nonnegative Jacobian JF (x) = detDF (x) ≥ 0 for a.e. x in a domain Ω ⊂ R n . The dilatation of F is defined (almost everywhere in Ω) by the formula K(x) = |DF (x)| JF (x) · Iwaniec and Sverak [IS] have conjectured that if p ≥ n − 1 and K ∈ Lploc(Ω) then F must be continuous, discrete and open. Moreover, they have confirmed this conjecture in the two-dimensional case n = 2 . In this article, we verify it in the higher-dimensional case n ≥ 2 whenever p > n − 1 .
Transactions of the American Mathematical Society | 1996
Pekka Koskela; Juan J. Manfredi; Enrique Villamor
In this paper we discuss two different topics concerning Aharmonic functions. These are weak solutions of the partial differential equation div(A(x,∇u)) = 0, where α(x)|ξ|p−1 ≤ 〈A(x, ξ), ξ〉 ≤ β(x)|ξ|p−1 for some fixed p ∈ (1,∞), the function β is bounded and α(x) > 0 for a.e. x. First, we present a new approach to the regularity of A-harmonic functions for p > n−1. Secondly, we establish results on the existence of nontangential limits for A-harmonic functions in the Sobolev space W 1,q(B), for some q > 1, where B is the unit ball in Rn. Here q is allowed to be different from p.
Journal of Geometric Analysis | 1996
Juan J. Manfredi; Enrique Villamor
AbstractIn this paper we prove that ifu: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf% gDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFbcVqdaahaaWcbeqa% aGqaciaa+5gaaaGccqGHsgIRcqWFDeIuaaa!45FB!
Journal of Geometric Analysis | 2001
Bao Qin Li; Enrique Villamor
Complex Variables and Elliptic Equations | 2001
Enrique Villamor; Bao Qin Li
{\mathbb{B}}^n \to {\mathbb{R}}
Israel Journal of Mathematics | 2001
Bao Qin Li; Enrique Villamor
Complex Variables and Elliptic Equations | 2016
Enrique Villamor
, where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf% gDOjdaryqr1ngBPrginfgDObcv39gaiuqacqWFbcVqdaahaaWcbeqa% aGqaciaa+5gaaaaaaa!42EF!
Complex Variables and Elliptic Equations | 1992
Enrique Villamor
Indiana University Mathematics Journal | 1998
Enrique Villamor; Juan J. Manfredi
{\mathbb{B}}^n
Illinois Journal of Mathematics | 2001
Juan J. Manfredi; Enrique Villamor