Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ensel Oh is active.

Publication


Featured researches published by Ensel Oh.


PLOS ONE | 2009

Identification of Novel Reference Genes Using Multiplatform Expression Data and Their Validation for Quantitative Gene Expression Analysis

Mi Jeong Kwon; Ensel Oh; Seungmook Lee; Mi Ra Roh; Si Eun Kim; Yangsoon Lee; Yoon-La Choi; Yong-Ho In; Taesung Park; Sang Seok Koh; Young Kee Shin

Normalization of mRNA levels using endogenous reference genes (ERGs) is critical for an accurate comparison of gene expression between different samples. Despite the popularity of traditional ERGs (tERGs) such as GAPDH and ACTB, their expression variability in different tissues or disease status has been reported. Here, we first selected candidate housekeeping genes (HKGs) using human gene expression data from different platforms including EST, SAGE, and microarray, and 13 novel ERGs (nERGs) (ARL8B, CTBP1, CUL1, DIMT1L, FBXW2, GPBP1, LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27, UBQLN1, ZNF207) were further identified from these HKGs. The mean coefficient variation (CV) values of nERGs were significantly lower than those of tERGs and the expression level of most nERGs was relatively lower than high expressing tERGs in all dataset. The higher expression stability and lower expression levels of most nERGs were validated in 108 human samples including formalin-fixed paraffin-embedded (FFPE) tissues, frozen tissues and cell lines, through quantitative real-time RT-PCR (qRT-PCR). Furthermore, the optimal number of nERGs required for accurate normalization was as few as two, while four genes were required when using tERGs in FFPE tissues. Most nERGs identified in this study should be better reference genes than tERGs, based on their higher expression stability and fewer numbers needed for normalization when multiple ERGs are required.


BMC Cancer | 2010

Triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival

Yoon-La Choi; Ensel Oh; Sarah Park; Yeonju Kim; Yeon-Hee Park; Kyoung Jun Song; Eun Yoon Cho; Yun-Chul Hong; Jong Sun Choi; Jeong Eon Lee; Jung Han Kim; Seok Jin Nam; Young-Hyuck Im; Jung-Hyun Yang; Young Kee Shin

BackgroundTriple-negative breast cancers (TNBCs) and basal-like breast cancers (BLBCs) are known as poor outcome subtypes with a lack of targeted therapy. Previous studies have shown conflicting results regarding the difference of prognostic significance between TNBCs and BLBCs. In this study, we aimed to characterize the prognostic features of TNBCs, in view of BLBCs and quintuple-negative breast cancers (QNBC/5NPs).MethodsUsing tissue microarray-based immunohistochemical analysis, we categorized 951 primary breast cancers into four or five subtypes according to the expression of ER, PR, HER2, and basal markers (CK5/6, EGFR).ResultsThe results of this study showed that both TNBCs and BLBCs were associated with high histological and/or nuclear grades. When the TNBCs are divided into two subtypes by the presence of basal markers, the clinicopathologic characteristics of TNBCs were mainly maintained in the BLBCs. The 5-subgrouping was the better prediction model for both disease free and overall survival in breast cancers than the 4-subgrouping. After multivariate analysis of TNBCs, the BLBCs did not have a worse prognosis than the QNBC/5NPs. Interestingly, the patients with BLBCs showed significant adjuvant chemotherapy benefit. In addition, QNBC/5NPs comprised about 6~8% of breast cancers in publicly available breast cancer datasetsConclusionThe QNBC/5NP subtype is a worse prognostic subgroup of TNBCs, especially in higher stage and this result may be related to adjuvant chemotherapy benefit of BLBCs, calling for caution in the identification of subgroups of patients for therapeutic classification.


PLOS ONE | 2015

Comparison of Accuracy of Whole-Exome Sequencing with Formalin-Fixed Paraffin-Embedded and Fresh Frozen Tissue Samples

Ensel Oh; Yoon-La Choi; Mi Jeong Kwon; Ryong Nam Kim; Yu Jin Kim; Ji-Young Song; Kyung Soo Jung; Young Kee Shin

Formalin fixing with paraffin embedding (FFPE) has been a standard sample preparation method for decades, and archival FFPE samples are still very useful resources. Nonetheless, the use of FFPE samples in cancer genome analysis using next-generation sequencing, which is a powerful technique for the identification of genomic alterations at the nucleotide level, has been challenging due to poor DNA quality and artificial sequence alterations. In this study, we performed whole-exome sequencing of matched frozen samples and FFPE samples of tissues from 4 cancer patients and compared the next-generation sequencing data obtained from these samples. The major differences between data obtained from the 2 types of sample were the shorter insert size and artificial base alterations in the FFPE samples. A high proportion of short inserts in the FFPE samples resulted in overlapping paired reads, which could lead to overestimation of certain variants; >20% of the inserts in the FFPE samples were double sequenced. A large number of soft clipped reads was found in the sequencing data of the FFPE samples, and about 30% of total bases were soft clipped. The artificial base alterations, C>T and G>A, were observed in FFPE samples only, and the alteration rate ranged from 200 to 1,200 per 1M bases when sequencing errors were removed. Although high-confidence mutation calls in the FFPE samples were compatible to that in the frozen samples, caution should be exercised in terms of the artifacts, especially for low-confidence calls. Despite the clearly observed artifacts, archival FFPE samples can be a good resource for discovery or validation of biomarkers in cancer research based on whole-exome sequencing.


Scientific Reports | 2015

Aberrant CDK4 Amplification in Refractory Rhabdomyosarcoma as Identified by Genomic Profiling

Silvia Park; Jeeyun Lee; In-Gu Do; Jiryeon Jang; Kyoohyoung Rho; Seonjoo Ahn; Lira Maruja; Sung Joo Kim; Kyoung-Mee Kim; Mao Mao; Ensel Oh; Yu Jin Kim; Jhingook Kim; Yoon-La Choi

Rhabdomyosarcoma (RMS) is the most commonly occurring type of soft tissue tumor in children. However, it is rare in adults, and therefore, very little is known about the most appropriate treatment strategy for adult RMS patients. We performed genomic analysis of RMS cells derived from a 27-year-old male patient whose disease was refractory to treatment. A peritoneal seeding nodule from the primary tumor, pleural metastases, malignant pleural effusion, and ascites obtained during disease progression, were analyzed. Whole exome sequencing revealed 23 candidate variants, and 10 of 23 mutations were validated by Sanger sequencing. Three of 10 mutations were present in both primary and metastatic tumors, and 3 mutations were detected only in metastatic specimens. Comparative genomic hybridization array analysis revealed prominent amplification in the 12q13–14 region, and more specifically, the CDK4 proto-oncogene was highly amplified. ALK overexpression was observed at both protein and RNA levels. However, an ALK fusion assay using NanoString technology failed to show any ALK rearrangements. Little genetic heterogeneity was observed between primary and metastatic RMS cells. We propose that CDK4, located at 12q14, is a potential target for drug development for RMS treatment.


Oncotarget | 2015

HER2 as a novel therapeutic target for cervical cancer

Doo-Yi Oh; Seokhwi Kim; Yoon-La Choi; Young Jae Cho; Ensel Oh; Jung-Joo Choi; Kyungsoo Jung; Ji-Young Song; Suzie E. Ahn; Byoung-Gie Kim; Duk-Soo Bae; Woong-Yang Park; Jeong-Won Lee; Sang-Yong Song

Surgery and radiation are the current standard treatments for cervical cancer. However, there is no effective therapy for metastatic or recurrent cases, necessitating the identification of therapeutic targets. In order to create preclinical models for screening potential therapeutic targets, we established 14 patient-derived xenograft (PDX) models of cervical cancers using subrenal implantation methods. Serially passaged PDX tumors retained the histopathologic and genomic features of the original tumors. Among the 9 molecularly profiled cervical cancer patient samples, a HER2-amplified tumor was detected by array comparative genomic hybridization and targeted next-generation sequencing. We confirmed HER2 overexpression in the tumor and serially passaged PDX. Co-administration of trastuzumab and lapatinib in the HER2-overexpressed PDX significantly inhibited tumor growth compared to the control. Thus, we established histopathologically and genomically homologous PDX models of cervical cancer using subrenal implantation. Furthermore, we propose HER2 inhibitor-based therapy for HER2-amplified cervical cancer refractory to conventional therapy.


PLOS ONE | 2013

Low SP1 Expression Differentially Affects Intestinal-Type Compared with Diffuse-Type Gastric Adenocarcinoma

Hun Seok Lee; Cheol-Keun Park; Ensel Oh; Özgür Cem Erkin; Hun Soon Jung; Mi-Hyun Cho; Mi Jeong Kwon; Seoung Wan Chae; Seok-Hyung Kim; Li-Hui Wang; Min-Jeong Park; S. Lee; Ho Bin Yang; Lina Jia; Yoon-La Choi; Young Kee Shin

Specificity protein 1 (SP1) is an essential transcription factor that regulates multiple cancer-related genes. Because aberrant expression of SP1 is related to cancer development and progression, we focused on SP1 expression in gastric carcinoma and its correlation with disease outcomes. Although patient survival decreased as SP1 expression increased (P<0.05) in diffuse-type gastric cancer, the lack of SP1 expression in intestinal-type gastric cancer was significantly correlated with poor survival (P<0.05). The knockdown of SP1 in a high SP1-expressing intestinal-type gastric cell line, MKN28, increased migration and invasion but decreased proliferation. Microarray data in SP1 siRNA-transfected MKN28 revealed that the genes inhibiting migration were downregulated, whereas the genes negatively facilitating proliferation were increased. However, both migration and invasion were decreased by forced SP1 expression in a low SP1-expressing intestinal-type gastric cell line, AGS. Unlike the intestinal-type, in a high SP1-expressing diffuse-type gastric cell line, SNU484, migration and invasion were decreased by SP1 siRNA. In contrast to previous studies that did not identify differences between the 2 histological types, our results reveal that low expression of SP1 is involved in cancer progression and metastasis and differentially affects intestinal-type compared with diffuse-type gastric adenocarcinoma.


Oncotarget | 2016

Chronic TGFβ stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin β3-Akt-GSK3β signaling.

Gab-Yong Bae; Soon-Ki Hong; Jeong-Rak Park; Ok-Seon Kwon; Keun-Tae Kim; JaeHyung Koo; Ensel Oh; Hyuk-Jin Cha

Chronic exposure to TGFβ, a frequent occurrence for tumor cells in the tumor microenvironment, confers more aggressive phenotypes on cancer cells by promoting their invasion and migration while at the same time increasing their resistance to the growth-inhibitory effect of TGFβ. In this study, a transdifferentiated (TD) A549 cell model, established by chronically exposing A549 cells to TGFβ, showed highly invasive phenotypes in conjunction with attenuation of Smad-dependent signaling. We show that Snail protein, the mRNA expression of which strongly correlates with a poor prognosis in lung cancer patients, was highly stable in TD cells after TGFβ stimulation. The increased protein stability of Snail in TD cells correlated with elevated inhibitory phosphorylation of GSK3β, resulting from the high Akt activity. Notably, integrin β3, whose expression was markedly increased upon sustained exposure to TGFβ, was responsible for the high Akt activity as well as the increased Snail protein stability in TD cells. Consistently, clinical database analysis on lung cancer patients revealed a negative correlation between overall survival and integrin β3 mRNA levels. Therefore, we suggest that the integrin β3-Akt-GSK3β signaling axis plays an important role in non-canonical TGFβ signaling, determining the invasive properties of tumor cells chronically exposed to TGFβ.


Epigenomics | 2016

Efficiency of methylated DNA immunoprecipitation bisulphite sequencing for whole-genome DNA methylation analysis

Hae Min Jeong; Sangseon Lee; Heejoon Chae; RyongNam Kim; Mi Jeong Kwon; Ensel Oh; Yoon-La Choi; Sun Kim; Young Kee Shin

AIMS We compared four common methods for measuring DNA methylation levels and recommended the most efficient method in terms of cost and coverage. MATERIALS & METHODS The DNA methylation status of liver and stomach tissues was profiled using four different methods, whole-genome bisulphite sequencing (WG-BS), targeted bisulphite sequencing (Targeted-BS), methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA immunoprecipitation bisulphite sequencing (MeDIP-BS). We calculated DNA methylation levels using each method and compared the results. RESULTS MeDIP-BS yielded the most similar DNA methylation profile to WG-BS, with 20 times less data, suggesting remarkable cost savings and coverage efficiency compared with the other methods. CONCLUSION MeDIP-BS is a practical cost-effective method for analyzing whole-genome DNA methylation that is highly accurate at base-pair resolution.


Oncotarget | 2015

GalNAc-T14 promotes metastasis through Wnt dependent HOXB9 expression in lung adenocarcinoma.

Ok-Seon Kwon; Ensel Oh; Jeong-Rak Park; Ji-Seon Lee; Gab-Yong Bae; JaeHyung Koo; Hyongbum Kim; Yoon La Choi; Young Soo Choi; Jhingook Kim; Hyuk-Jin Cha

While metastasis, the main cause of lung cancer-related death, has been extensively studied, the underlying molecular mechanism remains unclear. A previous clinicogenomic study revealed that expression of N-acetylgalactosaminyltransferase (GalNAc-T14), is highly inversely correlated with recurrence-free survival in those with non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism(s) has not been determined. Here, we showed that GalNAc-T14 expression was positively associated with the invasive phenotype. Microarray and biochemical analyses revealed that HOXB9, the expression of which was increased in a GalNAc-T14-dependent manner, played an important role in metastasis. GalNAc-T14 increased the sensitivity of the WNT response and increased the stability of the β-catenin protein, leading to induced expression of HOXB9 and acquisition of an invasive phenotype. Pharmacological inhibition of β-catenin in GalNAc-T14-expressing cancer cells suppressed HOXB9 expression and invasion. A meta-analysis of clinical genomics data revealed that expression of GalNAc-T14 or HOXB9 was strongly correlated with reduced recurrence-free survival and increased hazard risk, suggesting that targeting β-catenin within the GalNAc-T14/WNT/HOXB9 axis may be a novel therapeutic approach to inhibit metastasis in NSCLC.


PLOS ONE | 2017

Unforeseen clonal evolution of tumor cell population in recurrent and metastatic dermatofibrosarcoma protuberans

Ensel Oh; Hae Min Jeong; Mi Jeong Kwon; Sang Yun Ha; Hyung Kyu Park; Ji-Young Song; Kim Yj; Jong-Sun Choi; Eun Hee Lee; Jeeyun Lee; Yoon-La Choi; Young Kee Shin

Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma, generally of low-grade malignancy. DFSP is locally aggressive with a high recurrence rate, but metastasis occurs rarely. To investigate the mechanism of metastasis in DFSP, we analyzed the whole exome sequencing data of serial tumor samples obtained from a patient who had a 10-year history of recurrent and metastatic DFSP. Tracking various genomic alterations, namely somatic mutations, copy number variations, and chromosomal rearrangements, we observed a dramatic change in tumor cell population during the occurrence of metastasis in this DFSP case. The new subclone that emerged in metastatic DFSP harbored a completely different set of somatic mutations and new focal amplifications, which had not been observed in the primary clone before metastasis. The COL1A1-PDGFB fusion, characteristic of DFSP, was found in all of the serial samples. Moreover, the break position on the fusion gene was identical in all samples. Based on these observations, we suggest a clonal evolution model to explain the mechanism underlying metastasis in DFSP and identified several candidate target genes responsible for metastatic DFSP by utilizing The Cancer Genome Atlas database. This is the first study to observe clonal evolution in metastatic DFSP and provide insight for a possible therapeutic strategy for imatinib-resistant or metastatic DFSP.

Collaboration


Dive into the Ensel Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Kee Shin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mi Jeong Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hae Min Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doo-Yi Oh

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryong Nam Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge