Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enxuan Jing is active.

Publication


Featured researches published by Enxuan Jing.


Nature | 2010

SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation

Matthew D. Hirschey; Tadahiro Shimazu; Eric S. Goetzman; Enxuan Jing; Bjoern Schwer; David B. Lombard; Carrie A. Grueter; Charles Harris; Sudha B. Biddinger; Olga Ilkayeva; Robert D. Stevens; Yu Li; Asish K. Saha; Neil B. Ruderman; James R. Bain; Christopher B. Newgard; Robert V. Farese; Frederick W. Alt; C. Ronald Kahn; Eric Verdin

Sirtuins are NAD+-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal under basal conditions, but show marked hyperacetylation of several mitochondrial proteins. Here we report that SIRT3 expression is upregulated during fasting in liver and brown adipose tissues. During fasting, livers from mice lacking SIRT3 had higher levels of fatty-acid oxidation intermediate products and triglycerides, associated with decreased levels of fatty-acid oxidation, compared to livers from wild-type mice. Mass spectrometry of mitochondrial proteins shows that long-chain acyl coenzyme A dehydrogenase (LCAD) is hyperacetylated at lysine 42 in the absence of SIRT3. LCAD is deacetylated in wild-type mice under fasted conditions and by SIRT3 in vitro and in vivo; and hyperacetylation of LCAD reduces its enzymatic activity. Mice lacking SIRT3 exhibit hallmarks of fatty-acid oxidation disorders during fasting, including reduced ATP levels and intolerance to cold exposure. These findings identify acetylation as a novel regulatory mechanism for mitochondrial fatty-acid oxidation and demonstrate that SIRT3 modulates mitochondrial intermediary metabolism and fatty-acid use during fasting.


Molecular Cell | 2011

SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome

Matthew D. Hirschey; Tadahiro Shimazu; Enxuan Jing; Carrie A. Grueter; Amy M. Collins; Bradley E. Aouizerat; Alena Stančáková; Eric S. Goetzman; Maggie Lam; Bjoern Schwer; Robert D. Stevens; Michael J. Muehlbauer; Sanjay Kakar; Nathan M. Bass; Johanna Kuusisto; Markku Laakso; Frederick W. Alt; Christopher B. Newgard; Robert V. Farese; C. Ronald Kahn; Eric Verdin

Acetylation is increasingly recognized as an important metabolic regulatory posttranslational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein deacetylase SIRT3. Mice lacking SIRT3 (SIRT3KO) placed on a HFD show accelerated obesity, insulin resistance, hyperlipidemia, and steatohepatitis compared to wild-type (WT) mice. The lipogenic enzyme stearoyl-CoA desaturase 1 is highly induced in SIRT3KO mice, and its deletion rescues both WT and SIRT3KO mice from HFD-induced hepatic steatosis and insulin resistance. We further identify a single nucleotide polymorphism in the human SIRT3 gene that is suggestive of a genetic association with the metabolic syndrome. This polymorphism encodes a point mutation in the SIRT3 protein, which reduces its overall enzymatic efficiency. Our findings show that loss of SIRT3 and dysregulation of mitochondrial protein acetylation contribute to the metabolic syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

Enxuan Jing; Brice Emanuelli; Matthew D. Hirschey; Jeremie Boucher; Kevin Y. Lee; David B. Lombard; Eric Verdin; C. Ronald Kahn

Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle.


Molecular & Cellular Proteomics | 2012

Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline APPLICATION TO PROTEIN ACETYLATION AND PHOSPHORYLATION

Birgit Schilling; Matthew J. Rardin; Brendan MacLean; Anna M. Zawadzka; Barbara Frewen; Michael P. Cusack; Dylan J. Sorensen; Michael S. Bereman; Enxuan Jing; Christine C. Wu; Eric Verdin; C. Ronald Kahn; Michael J. MacCoss; Bradford W. Gibson

Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.


Biochemical Journal | 2011

Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation.

Agnieszka A. Kendrick; Mahua Choudhury; Shaikh Mizanoor Rahman; Carrie E. McCurdy; Marisa W. Friederich; Johan L.K. Van Hove; Peter A. Watson; Nicholas Birdsey; Jianjun Bao; David Gius; Michael N. Sack; Enxuan Jing; C. Ronald Kahn; Jacob E. Friedman; Karen R. Jonscher

Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.


Nature Medicine | 2008

Hepatic insulin resistance directly promotes formation of cholesterol gallstones

Sudha B. Biddinger; Joel T. Haas; Bian B. Yu; Olivier Bezy; Enxuan Jing; Wenwei Zhang; Terry G. Unterman; Martin C. Carey; C. Ronald Kahn

Despite the well-documented association between gallstones and the metabolic syndrome, the mechanistic links between these two disorders remain unknown. Here we show that mice solely with hepatic insulin resistance, created by liver-specific disruption of the insulin receptor (LIRKO mice) are markedly predisposed toward cholesterol gallstone formation due to at least two distinct mechanisms. Disinhibition of the forkhead transcription factor FoxO1, increases expression of the biliary cholesterol transporters Abcg5 and Abcg8, resulting in an increase in biliary cholesterol secretion. Hepatic insulin resistance also decreases expression of the bile acid synthetic enzymes, particularly Cyp7b1, and produces partial resistance to the farnesoid X receptor, leading to a lithogenic bile salt profile. As a result, after twelve weeks on a lithogenic diet, all of the LIRKO mice develop gallstones. Thus, hepatic insulin resistance provides a crucial link between the metabolic syndrome and increased cholesterol gallstone susceptibility.


Diabetes | 2013

Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle through Reversible Enzymatic Deacetylation

Enxuan Jing; Brian T. O’Neill; Matthew J. Rardin; André Kleinridders; Olga R. Ilkeyeva; Siegfried Ussar; James R. Bain; Kevin Y. Lee; Eric Verdin; Christopher B. Newgard; Bradford W. Gibson; C. Ronald Kahn

Sirt3 is an NAD+-dependent deacetylase that regulates mitochondrial function by targeting metabolic enzymes and proteins. In fasting mice, Sirt3 expression is decreased in skeletal muscle resulting in increased mitochondrial protein acetylation. Deletion of Sirt3 led to impaired glucose oxidation in muscle, which was associated with decreased pyruvate dehydrogenase (PDH) activity, accumulation of pyruvate and lactate metabolites, and an inability of insulin to suppress fatty acid oxidation. Antibody-based acetyl-peptide enrichment and mass spectrometry of mitochondrial lysates from WT and Sirt3 KO skeletal muscle revealed that a major target of Sirt3 deacetylation is the E1α subunit of PDH (PDH E1α). Sirt3 knockout in vivo and Sirt3 knockdown in myoblasts in vitro induced hyperacetylation of the PDH E1α subunit, altering its phosphorylation leading to suppressed PDH enzymatic activity. The inhibition of PDH activity resulting from reduced levels of Sirt3 induces a switch of skeletal muscle substrate utilization from carbohydrate oxidation toward lactate production and fatty acid utilization even in the fed state, contributing to a loss of metabolic flexibility. Thus, Sirt3 plays an important role in skeletal muscle mitochondrial substrate choice and metabolic flexibility in part by regulating PDH function through deacetylation.


The FASEB Journal | 2012

Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway

Kristy L. Townsend; Ryo Suzuki; Tian Lian Huang; Enxuan Jing; Tim J. Schulz; Kevin Lee; Cullen M. Taniguchi; Daniel O. Espinoza; Lindsay E. McDougall; Hongbin Zhang; Tong-Chuan He; Efi Kokkotou; Yu-Hua Tseng

Body weight is regulated by coordinating energy intake and energy expenditure. Transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling has been shown to regulate energy balance in lower organisms, but whether a similar pathway exists in mammals is unknown. We have previously demonstrated that BMP7 can regulate brown adipogenesis and energy expenditure. In the current study, we have uncovered a novel role for BMP7 in appetite regulation. Systemic treatment of diet‐induced obese mice with BMP7 resulted in increased energy expenditure and decreased food intake, leading to a significant reduction in body weight and improvement of metabolic syndrome. Similar degrees of weight loss with reduced appetite were also observed in BMP7‐treated ob/ob mice, suggesting a leptin‐independent mechanism utilized by BMP7. Intracerebroventricular administration of BMP7 to mice led to an acute decrease in food intake, which was mediated, at least in part, by a central rapamycin‐sensitive mTOR‐p70S6 kinase pathway. Together, these results underscore the importance of BMP7 in regulating both food intake and energy expenditure, and suggest new therapeutic approaches for obesity and its comorbidities.— Townsend, K. L., Suzuki, R., Huang, T. L., Jing, E., Schulz, T. J., Lee, K., Taniguchi, C. M., Espinoza, D. O., McDougall, L. E., Zhang, H., He, T.‐C., Kokkotou, E., Tseng, Y.‐H. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 26, 2187‐2196 (2012). www.fasebj.org


Nutrition & Metabolism | 2018

Hsp90β knockdown in DIO mice reverses insulin resistance and improves glucose tolerance

Enxuan Jing; Pragalath Sundararajan; Ishita Deb Majumdar; Suwagmani Hazarika; Samantha Fowler; Angela Szeto; Stephane Gesta; Armando J. Mendez; Vivek K. Vishnudas; Rangaprasad Sarangarajan; Niven R. Narain

BackgroundInhibition of Hsp90 has been shown to improve glucose tolerance and insulin sensitivity in mouse models of diabetes. In the present report, the specific isoform Hsp90ab1, was identified as playing a major role in regulating insulin signaling and glucose metabolism.MethodsIn a diet-induced obese (DIO) mouse model of diabetes, expression of various Hsp90 isoforms in skeletal tissue was examined. Subsequent experiments characterized the role of Hsp90ab1 isoform in glucose metabolism and insulin signaling in primary human skeletal muscle myoblasts (HSMM) and a DIO mouse model.ResultsIn DIO mice Hsp90ab1 mRNA was upregulated in skeletal muscle compared to lean mice and knockdown using anti-sense oligonucleotide (ASO) resulted in reduced expression in skeletal muscle that was associated with improved glucose tolerance, reduced fed glucose and fed insulin levels compared to DIO mice that were treated with a negative control oligonucleotide. In addition, knockdown of HSP90ab1 in DIO mice was associated with reduced pyruvate dehydrogenase kinase-4 mRNA and phosphorylation of the muscle pyruvate dehydrogenase complex (at serine 232, 293 and 300), but increased phosphofructokinase 1, glycogen synthase 1 and long-chain specific acyl-CoA dehydrogenase mRNA. In HSMM, siRNA knockdown of Hsp90ab1 induced an increase in substrate metabolism, mitochondrial respiration capacity, and insulin sensitivity, providing further evidence for the role of Hsp90ab1 in metabolism.ConclusionsThe data support a novel role for Hsp90ab1 in arbitrating skeletal muscle plasticity via modulation of substrate utilization including glucose and fatty acids in normal and disease conditions. Hsp90ab1 represents a novel target for potential treatment of metabolic disease including diabetes.


Cell Metabolism | 2007

SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation/Deacetylation

Enxuan Jing; Stephane Gesta; C. Ronald Kahn

Collaboration


Dive into the Enxuan Jing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Verdin

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Bradford W. Gibson

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew J. Rardin

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James R. Bain

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge