Eny Kusrini
University of Indonesia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eny Kusrini.
Journal of Rare Earths | 2015
Eny Kusrini; Nofrijon Sofyan; Nyoman Suwartha; Gefin Yesya; Cindy Rianti Priadi
Abstract Engineering of chitosan by praseodymium has been investigated to improve the adsorption properties as well as physical characteristics of chitosan. Modification of chitosan changes the original properties of chitosan so that it can be more suitable for adsorption of fluoride ions. In this study, chitosan-praseodymium (Chi-Pr) was synthesized by impregnation method. The Chi-Pr complex was characterized by scanning electron microscopic-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared (FTIR) and employed as an adsorbent for removal of fluorides ions from water in the batch system. The variables such as contact time, concentration of Pr, adsorbent dose, initial concentration of fluoride ions, and competitor anions were studied. The adsorption efficiency of fluoride ions (η) with increasing Pr loading into chitosan (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%) were 35.5%, 56.1%, 72.0%, 68.5% and 62.5%, respectively. The Chi-Pr (15 wt.%) complex had the highest fluoride removal efficiency (72.0%). The experimental data fitted well to the Langmuir isotherm with maximum adsorption capacity (qmax) of 15.87 mg/g and an equilibrium constant (kL) of 0.15 mg. Kinetic study revealed that the adsorption of fluoride ions from water followed pseudo-second-order model with a maximum adsorption capacity (q2) of 8.20 mg/g and a rate constant (k2) of 0.01 g/mg·min. Adsorption efficiency of fluoride ions in the simulated drinking water was diminished with the changes in pH levels. The presence of Pr3+ in chitosan increased chitosans performance as an adsorbent for adsorption of fluoride ions.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2011
Muhammad Idiris Saleh; Eny Kusrini; M. A. Mohd Sarjidan; W.H. Abd. Majid
A mononuclear of [Eu(NO3)(Pic)(H2O)2(EO3)](Pic)·(0.73)H2O complex, where EO3=trietraethylene glycol and Pic=picrate anion, shows a red emission when used as an active layer in a single layer of ITO/EO3-Eu-Pic/Al configuration. The crystal structure of the complex consists of [Eu(NO3)(Pic)(H2O)2(EO3)]+ cation and [Pic]- anion. The Eu(III) ion is coordinated to the 10 oxygen atoms from one EO3 ligand, one Pic anion, one nitrate anion, and two water molecules. The complex is crystallized in triclinic with space group P-1. The hybrids in thin films I and II were prepared in the respective order solution concentrations of 15 and 20 mg/mL the emissive center. Comparing the photoluminescence (PL) and electroluminescence (EL) spectra, we can find that all emissions come from the characteristic transitions of the Eu(III) ion. The EL spectra of both thin films showed the occurrence of the most intense red-light emission around at 612 nm. Comparison of organic light-emitting device (OLED) current intensity characteristics as a function of voltage (I-V) show that the thin film I is better than those found for the thin film II. The thickness of the emitting layer is an important factor to control the current-voltage curve. The sharp and intense emission of the complex at low voltage indicates that the complex is a suitable and promising candidate for red-emitting materials.
Journal of Coordination Chemistry | 2010
Eny Kusrini; Muhammad Idiris Saleh; Rohana Adnan; Hoong-Kun Fun; Bohari M. Yamin
Two new isomers of [Ce(NO3)(Pic)(H2O)2(EO3)](Pic) complex (where EO3 = triethylene glycol and Pic = picrate anion) have been synthesized by one-pot reaction and structurally characterized. Both isomers, orange and yellow in color, respectively, have a triclinic P-1 crystal lattice with different unit cell dimension, and Ce(III) adopts a different coordination number. In orange isomer, the Pic anion is chelated to Ce(III) via phenolic and ortho-nitro oxygens in a bidentate mode, while in yellow isomer the Pic anion is chelated only monodentate through the phenolic oxygen. Coordination geometries can be described as a distorted bicapped square antiprism and a distorted tricapped trigonal prism for 1 and 2, respectively. Alcohol groups from EO3 form a 1-D chain with symmetry direction [1 0 0] through intermolecular O–H ··· O hydrogen bonding. Photoluminescence spectra of the complexes showed a broad band at 515–540 nm due to the 5d → 4f transition from the Ce(III) with electric dipole allowed.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014
Eny Kusrini; Rita Arbianti; Nofrijon Sofyan; Mohd Azmuddin Abdullah; Fika Andriani
In the presence of hydroxyl and amine groups, chitosan is highly reactive; therefore, it could be used as a carrier in drug delivery. For this study, chitosan-Sm complexes with different concentrations of samarium from 2.5 to 25 wt.% have been successfully synthesized by the impregnation method. Chitosan combined with Sm3+ ions produced a drug carrier material with fluorescence properties; thus, it could also be used as an indicator of drug release with ibuprofen (IBU) as a model drug. We evaluated the spectroscopic and interaction properties of chitosan and Sm3+ ions, the interaction of chitosan-Sm matrices with IBU as a model drug, and the effect of Sm3+ ions addition on the chitosan ability to adsorb the drug. The result showed that the hypersensitive fluorescence intensity of chitosan-Sm (2.5 wt.%) is higher than the others, even though the adsorption efficiency of chitosan-Sm 2.5wt.% is lower (29.75%) than that of chitosan-Sm 25 wt.% (33.04%). Chitosan-Sm 25 wt.% showed the highest efficiency of adsorption of ibuprofen (33.04%). In the release process of ibuprofen from the chitosan-Sm-IBU matrix, the intensity of orange fluorescent properties in the hypersensitive peak of 4G5/2→6H7/2 transition at 590 nm was observed. Fluorescent intensity increased with the cumulative amount of IBU released; therefore, the release of IBU from the Sm-modified chitosan complex can be monitored by the changes in fluorescent intensity.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2016
Eny Kusrini; Fatimah Hashim; Wan Nor Nadhirah Wan Noor Azmi; Nakisah Mat Amin; Ari Estuningtyas
The terbium trinitrate.trihydrate.18-crown ether-6, Tb(NO3)3(OH2)3.(18C6) complex has been characterized by elemental analysis, photoluminescence and single X-ray diffraction. The IC50 values were determined based on MTT assay while light and fluorescence microscopy imaging were employed to evaluate the cellular morphological changes. Alkaline comet assay was performed to analyze the DNA damage. The photoluminescence spectrum of the Tb complex excited at 325 nm displayed seven luminescence peaks corresponding to the (5)D4→(7)F(0, 1, 2, 3, 4, 5, 6) transitions. The cytotoxicity and genotoxicity studies indicated that the Tb(NO3)3(OH2)3.(18C6) complex and its salt form as well as the 18C6 molecule have excellent anti-amoebic activity with very low IC50 values are 7, 2.6 and 1.2 μg/mL, respectively, with significant decrease (p<0.05) in Acanthamoeba viability when the concentration was increased from 0 to 30 μg/mL. The mode of cell death in Acanthamoeba cells following treatment with the Tb complex was apoptosis. This is in contrast to the Tb(NO3)3.6H2O salt- and 18C6 molecule-treated Acanthamoeba, which exhibited necrotic type cells. The percentage of DNA damage following treatment with all the compounds at the IC25 values showed high percentage of type 1 with the % nuclei damage are 14.15±2.4; 46.00±4.2; 36.36±2.4; 45.16±0.6%, respectively for untreated, treated with Tb complex, Tb salt and 18C6 molecule. The work features promising potential of Tb(NO3)3(OH2)3.(18C6) complex as anti-amoebic agent, representing a therapeutic option for Acanthamoeba keratitis infection.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012
Eny Kusrini; Muhammad Idiris Saleh; Rohana Adnan; Yoki Yulizar; Mazidah Mamat
The [Tb(Pic)(2)(H(2)O)(EO3)](Pic)·0.5(EO3) complex, for which EO3 and Pic stand for triethylene glycol and picrate anion, respectively, was successfully prepared and characterized. The Tb(III) complex was crystallized in triclinic structure with space group P1¯. The Tb(III) ion was coordinated to nine oxygen atoms from one EO3 ligand, one water molecule, and two Pic anions. The photoluminescent (PL) spectrum of the complex displayed characteristic narrow bands arising from intraconfigurational transitions of the Tb(III) ion. The strongest emission was centred at 544 nm ((5)D(4)→(7)F(5)), which was responsible for the green emission. The short acyclic chain length of the EO3 ligand, lanthanide contraction, and a bulky picrate anion affected the PL intensity, coordination environment around the Tb(III) ion, and crystal structure of the inner-sphere [Tb(Pic)(2)(H(2)O)(EO3)](+) moiety. The unique crystal structure in the Tb complex contained a half mole of triethylene glycol solvated. The complex had a high thermal stability due to the role of π-π stacking interactions of the Pic anions. The appearance of an emission from the ligands suggests that the photoluminescence of ligands cannot be quenched by coordination to the Tb(III) ion in its complex, so the intramolecular energy transfer process from the triplet state of the ligands (T(1)(L)) to the resonant emissive energy level of Tb(III) is not effective.
Journal of Rare Earths | 2014
N. K. Za'aba; M. A. Mohd Sarjidan; W.H. Abd. Majid; Eny Kusrini; Muhammad Idiris Saleh
Terbium-picrate triethylene glycol (EO3-Tb-Pic) complex was prepared in thin film and single layer device structure of ITO/EO3-Tb-Pic/Al, using spin coating technique. The UV-Vis absorption spectroscopy analysis was performed to evaluate the elec- tronic molecular transition of the complex. The optical band gap, Eg estimated from the Tauc model revealed that EO3-Tb-Pic thin film exhibited a direct transition with Eg of 2.70 eV. The electronic parameters of the ITO/EO3-Tb-Pic/Al device such as the ideality factor n, barrier height Φb, saturation current Io, and series resistance Rs, were extracted from the conventional lnI-V, Cheungs func- tions and Nordes method. It was found that the evaluated parameters calculated from Nordes and Cheungs methods were consistent with those calculated from the conventional I-V method. In the double logarithmic I-V plot, three distinct regions based on the slope were identified, and the conduction mechanisms were discussed and explained. The mobility, μ value was estimated from SCLC re- gion as 2.58×10 -7 cm 2 /(V·s). This newly obtained lanthanide complex may be potentially utilized in electronic devices.
Acta Crystallographica Section E-structure Reports Online | 2008
Muhammad Idiris Saleh; Eny Kusrini; Mohd Mustaqim Rosli; Hoong-Kun Fun
In the crown ether ring of the title compound, C20H24O6·2C6H3N3O7·3H2O, the O—C(H2)—C(H2)—O torsion angles indicate a gauche conformation of the ethyleneoxy units, while the C—O—C—C torsion angles indicate planarity of these segments; the dihedral angle between the two benzene rings is 44.53 (13)°. In both picric acid molecules, one of the nitro groups is twisted away from the attached ring. The molecules are linked into chains along the b axis via intermolecular O—H⋯O hydrogen bonds. In addition, the crystal structure is stabilized by C—H⋯O hydrogen bonds and π–π interactions [centroid–centroid distance between benzene rings = 3.5697 (16) Å].
Acta Crystallographica Section E-structure Reports Online | 2006
M. Idiris Saleh; Eny Kusrini; Nurziana Ngah; Bohari M. Yamin
In the title compound, 2C14H18O5Br2·OH3+·Br3−, the two 15-crown-5 macrocylic rings are linked by an oxonium cation via O—H⋯O hydrogen bonds, forming a positively charged unsymmetrical sandwich-like compound with a tribromide counter-anion. The conformations of the two crown-5 fragments have gauche C—C and anti C—O linkages.
BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: Proceedings of the First International Symposium of Biomedical Engineering (ISBE 2016) | 2017
Eny Kusrini; Riesna Prassanti; Dwi Marta Nurjaya; Cindy Gunawan
The microsphere formulations of Chit/TPP/Sm/Fe3O4/Rn were prepared by an ionic gelation technique, where Chit=chitosan, TPP=tripolyphosphate, Sm=samarium and Rn=ranitidine. Optimum of microsphere formulation exhibit magnetic and fluorescent properties with adsorption efficiency of ∼92% was obtained for Chit/TPP/Sm/Fe3O4/Rn with ratio 400:500:50:1:20. Fluorescence intensity of microsphere formulations increased with the cumulative amount release of ranitidine, so that the changing of fluorescence intensity at wavelength of 590 nm referring to the Sm3+ ion could be used as indicator in DDS. With the demonstration of sustained release from microsphere formulation, it allows to investigate the applications to other drugs.