Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enza Maria Valente is active.

Publication


Featured researches published by Enza Maria Valente.


Nature | 2006

An SCN9A channelopathy causes congenital inability to experience pain.

James J. Cox; Frank Reimann; Adeline K. Nicholas; G Thornton; Emma Roberts; K Springell; Gulshan Karbani; H Jafri; J Mannan; Y Raashid; Lihadh Al-Gazali; H Hamamy; Enza Maria Valente; S Gorman; R Williams; Duncan P. McHale; John N. Wood; Fiona M. Gribble; Christopher Geoffrey Woods

The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the α-subunit of the voltage-gated sodium channel, Nav1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Nav1.7 by co-expression of wild-type or mutant human Nav1.7 with sodium channel β1 and β2 subunits in HEK293 cells. In cells expressing mutant Nav1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.


Annals of Neurology | 2004

PINK1 mutations are associated with sporadic early-onset parkinsonism.

Enza Maria Valente; Sergio Salvi; Tamara Ialongo; Roberta Marongiu; Antonio E. Elia; Viviana Caputo; Luigi Romito; Alberto Albanese; Bruno Dallapiccola; Anna Rita Bentivoglio

We have recently reported homozygous mutations in the PINK1 gene in three consanguineous families with early‐onset parkinsonism (EOP) linked to the PARK6 locus. To further evaluate the pathogenic role of PINK1 in EOP and to draw genotype–phenotype correlates, we performed PINK1 mutation analysis in a cohort of Italian EOP patients, mostly sporadic, with onset younger than 50 years of age. Seven of 100 patients carried missense mutations in PINK1. Two patients had two PINK1 mutations, whereas in five patients only one mutation was identified. Age at onset was in the fourth‐fifth decade (range, 37–47 years). The clinical picture was characterized by a typical parkinsonian phenotype with asymmetric onset and rare occurrence of atypical features. Slow progression and excellent response to levodopa were observed in all subject. Two of 200 healthy control individuals also carried one heterozygous missense mutation. The identification of a higher number of patients (5%) than controls (1%) carrying a single heterozygous mutation, along with previous positron emission tomography studies demonstrating a preclinical nigrostriatal dysfunction in PARK6 carriers, supports the hypothesis that haploinsufficiency of PINK1, as well as of other EOP genes, may represent a susceptibility factor toward parkinsonism. However, the pathogenetic significance of heterozygous PINK1 mutations still remains to be clarified. Ann Neurol 2004;56:336–341


American Journal of Human Genetics | 2001

Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36.

Enza Maria Valente; Anna Rita Bentivoglio; Peter H. Dixon; Alessandro Ferraris; Tamara Ialongo; Marina Frontali; Alberto Albanese; Nicholas W. Wood

The cause of Parkinson disease (PD) is still unknown, but genetic factors have recently been implicated in the etiology of the disease. So far, four loci responsible for autosomal dominant PD have been identified. Autosomal recessive juvenile parkinsonism (ARJP) is a clinically and genetically distinct entity; typical PD features are associated with early onset, sustained response to levodopa, and early occurrence of levodopa-induced dyskinesias, which are often severe. To date, only one ARJP gene, Parkin, has been identified, and multiple mutations have been detected both in families with autosomal recessive parkinsonism and in sporadic cases. The Parkin-associated phenotype is broad, and some cases are indistinguishable from idiopathic PD. In > or = 50% of families with ARJP that have been analyzed, no mutations could be detected in the Parkin gene. We identified a large Sicilian family with four definitely affected members (the Marsala kindred). The phenotype was characterized by early-onset (range 32-48 years) parkinsonism, with slow progression and sustained response to levodopa. Linkage of the disease to the Parkin gene was excluded. A genomewide homozygosity screen was performed in the family. Linkage analysis and haplotype construction allowed identification of a single region of homozygosity shared by all the affected members, spanning 12.5 cM on the short arm of chromosome 1. This region contains a novel locus for autosomal recessive early-onset parkinsonism, PARK6. A maximum LOD score 4.01 at recombination fraction .00 was obtained for marker D1S199.


Acta Neurologica Scandinavica | 2009

Neurophysiological classification and sensitivity in 500 carpal tunnel syndrome hands

Luca Padua; Mauro LoMonaco; B. Gregori; Enza Maria Valente; R. Padua; P. Tonali

Objectives‐ To evaluate the following points about carpal tunnel syndrome (CTS): 1) characterization of a wide population; 2) sensitivity of electrodiagnostic tests, and particularly the contribution of disto‐proximal ratio test; 3) validity of a neurophysiological classification developed by us. Material and methods ‐ Prospective study in 500 hands with CTS symptoms. Neurophysiological “standard” tests were always performed: sensory nerve conduction velocity (SNCV) first‐ and third digit‐wrist and distal motor latency (DML). In “standard negative” hands disto‐proximal ratio technique (R) was performed. Neurophysiological classification: Extreme CTS (absence of median motor, sensory responses), Severe (absence of sensory response, abnormal DML), Moderate (abnormal SNCV, abnormal DML), Mild (abnormal SNCV, normal DML), Minimal (abnormal R or other segmental/comparative test, normal standard tests). Results‐ Sensibility of standard tests: 77%. R increased the diagnostic yield by 20%. CTS classification appeared reliable with significant differences between groups. Conclusion ‐ R is a useful test, the classification may be useful in clinical/therapeutical decisions.


Human Mutation | 2008

Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast‐flow vascular anomalies are caused by RASA1 mutations

Nicole Revencu; Laurence M. Boon; John B. Mulliken; Odile Enjolras; Maria R. Cordisco; Patricia E. Burrows; Philippe Clapuyt; Frank Hammer; Josée Dubois; Eulalia Baselga; Francesco Brancati; Robin Carder; José M Ceballos Quintal; Bruno Dallapiccola; Gayle Fischer; Ilona J. Frieden; Maria C. Garzon; John I. Harper; Jennifer Johnson-Patel; Christine Labrèze; Loreto Martorell; Harriet J. Paltiel; Annette Pohl; Julie S. Prendiville; Isabelle Quere; Dawn H. Siegel; Enza Maria Valente; Annet Van Hagen; Liselot Van Hest; Keith K. Vaux

Capillary malformation‐arteriovenous malformation (CM‐AVM) is a newly recognized autosomal dominant disorder, caused by mutations in the RASA1 gene in six families. Here we report 42 novel RASA1 mutations and the associated phenotype in 44 families. The penetrance and de novo occurrence were high. All affected individuals presented multifocal capillary malformations (CMs), which represent the hallmark of the disorder. Importantly, one‐third had fast‐flow vascular lesions. Among them, we observed severe intracranial AVMs, including vein of Galen aneurysmal malformation, which were symptomatic at birth or during infancy, extracranial AVM of the face and extremities, and Parkes Weber syndrome (PKWS), previously considered sporadic and nongenetic. These fast‐flow lesions can be differed from the other two genetic AVMs seen in hereditary hemorrhagic telangiectasia (HHT) and in phosphatase and tensin homolog (PTEN) hamartomatous tumor syndrome. Finally, some CM‐AVM patients had neural tumors reminiscent of neurofibromatosis type 1 or 2. This is the first extensive study on the phenotypes associated with RASA1 mutations, and unravels their wide heterogeneity. Hum Mutat 29(7), 959–965, 2008.


Annals of Neurology | 2002

Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study.

Naheed L. Khan; Enza Maria Valente; Anna Rita Bentivoglio; Nicholas W. Wood; Alberto Albanese; David J. Brooks; Paola Piccini

PARK6, a locus for early‐onset recessive parkinsonism, has been causally implicated in nine unrelated families from four different countries. The gene is still unidentified and hence the importance of PARK6 as a cause of Parkinsons disease is unknown. To date, no pathology or functional imaging studies are available on PARK6‐linked parkinsonism. We have used 18F‐dopa positron emission tomography to study four patients who are homozygous and three asymptomatic relatives who are heterozygous for PARK6. The clinically affected PARK6 subjects had a similar 85% reduction in posterior dorsal putamen 18F‐dopa uptake to a group of idiopathic Parkinsons disease patients matched for clinical disease severity and duration but showed significantly greater involvement of head of caudate and anterior putamen. The group of asymptomatic PARK6 carriers showed a significant mean 20 to 30% reduction in caudate and putamen 18F‐dopa uptake in comparison with controls, individual values falling toward the bottom of the normal range. Our results indicate that PARK6 pathology results in a more uniform loss of striatal dopamine terminal function than Parkinsons disease. The subclinical loss of striatal dopamine storage capacity found in the PARK6 carriers implies that the unidentified gene on the short arm of chromosome 1 exhibits either haploinsufficency or a dominant negative effect.


Nature Genetics | 2010

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes

Enza Maria Valente; Clare V. Logan; Soumaya Mougou-Zerelli; Jeong Ho Lee; Jennifer L. Silhavy; Francesco Brancati; Miriam Iannicelli; Lorena Travaglini; Sveva Romani; Barbara Illi; Matthew Adams; Katarzyna Szymanska; Annalisa Mazzotta; Ji Eun Lee; Jerlyn Tolentino; Dominika Swistun; Carmelo Salpietro; Carmelo Fede; Stacey Gabriel; Carsten Russ; Kristian Cibulskis; Carrie Sougnez; Friedhelm Hildebrandt; Edgar A. Otto; Susanne Held; Bill H. Diplas; Erica E. Davis; Mario Mikula; Charles M. Strom; Bruria Ben-Zeev

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n = 10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.


Cell Death & Differentiation | 2010

The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy.

Silvia Michiorri; Vania Gelmetti; E Giarda; F Lombardi; Francesca Romano; Roberta Marongiu; S Nerini-Molteni; P Sale; R Vago; Giuseppe Arena; Liliana Torosantucci; Laura Cassina; M A Russo; Bruno Dallapiccola; Enza Maria Valente; Giorgio Casari

Mutations in the PINK1 gene cause autosomal recessive Parkinsons disease. The PINK1 gene encodes a protein kinase that is mitochondrially cleaved to generate two mature isoforms. In addition to its protective role against mitochondrial dysfunction and apoptosis, PINK1 is also known to regulate mitochondrial dynamics acting upstream of the PD-related protein Parkin. Recent data showed that mitochondrial Parkin promotes the autophagic degradation of dysfunctional mitochondria, and that stable PINK1 silencing may have an indirect role in mitophagy activation. Here we report a new interaction between PINK1 and Beclin1, a key pro-autophagic protein already implicated in the pathogenesis of Alzheimers and Huntingtons diseases. Both PINK1 N- and C-terminal are required for the interaction, suggesting that full-length PINK1, and not its cleaved isoforms, interacts with Beclin1. We also demonstrate that PINK1 significantly enhances basal and starvation-induced autophagy, which is reduced by knocking down Beclin1 expression or by inhibiting the Beclin1 partner Vps34. A mutant, PINK1W437X, interaction of which with Beclin1 is largely impaired, lacks the ability to enhance autophagy, whereas this is not observed for PINK1G309D, a mutant with defective kinase activity but unaltered ability to bind Beclin1. These findings identify a new function of PINK1 and further strengthen the link between autophagy and proteins implicated in the neurodegenerative process.


American Journal of Human Genetics | 2011

Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease

Marie Christine Chartier-Harlin; Justus C. Dachsel; Carles Vilariño-Güell; Sarah Lincoln; Frédéric Leprêtre; Mary M. Hulihan; Jennifer M. Kachergus; Austen J. Milnerwood; Lucia Tapia; Mee Sook Song; Emilie Le Rhun; Eugénie Mutez; Lydie Larvor; Aurélie Duflot; Christel Vanbesien-Mailliot; Alexandre Kreisler; Owen A. Ross; Kenya Nishioka; Alexandra I. Soto-Ortolaza; Stephanie A. Cobb; Heather L. Melrose; Bahareh Behrouz; Brett H. Keeling; Justin A. Bacon; Emna Hentati; Williams L; Akiko Yanagiya; Nahum Sonenberg; Paul J. Lockhart; Abba C. Zubair

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Lancet Neurology | 2011

Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: A case-control study

Owen A. Ross; Alexandra I. Soto-Ortolaza; Michael G. Heckman; Jan O. Aasly; Nadine Abahuni; Grazia Annesi; Justin A. Bacon; Soraya Bardien; Maria Bozi; Alexis Brice; Laura Brighina; Christine Van Broeckhoven; Jonathan Carr; Marie Christine Chartier-Harlin; Efthimios Dardiotis; Dennis W. Dickson; Nancy N. Diehl; Alexis Elbaz; Carlo Ferrarese; Alessandro Ferraris; Brian K. Fiske; J. Mark Gibson; Rachel A. Gibson; Georgios M. Hadjigeorgiou; Nobutaka Hattori; John P. A. Ioannidis; Barbara Jasinska-Myga; Beom S. Jeon; Yun Joong Kim; Christine Klein

BACKGROUND Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinsons disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinsons Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0·5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1·43, 95% CI 1·15-1·78; p=0·0012) and Asian individuals (A419V, 2·27, 1·35-3·83; p=0·0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0·82, 0·72-0·94; p=0·0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1·73, 1·20-2·49; p=0·0026), but no association was noted for R1628P (0·62, 0·36-1·07; p=0·087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4·48, 1·33-15·09; p=0·012). INTERPRETATION The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING Michael J Fox Foundation and National Institutes of Health.

Collaboration


Dive into the Enza Maria Valente's collaboration.

Top Co-Authors

Avatar

Francesco Brancati

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Rita Bentivoglio

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Alberto Albanese

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Enrico Bertini

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Alessandro Ferraris

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Eugen Boltshauser

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Simona Petrucci

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Marta Romani

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge