Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enzo Di Fabrizio is active.

Publication


Featured researches published by Enzo Di Fabrizio.


Nature Nanotechnology | 2010

Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons

Francesco De Angelis; Gobind Das; Patrizio Candeloro; M. Patrini; Matteo Galli; Alpan Bek; Marco Lazzarino; Ivan Maksymov; Carlo Liberale; Lucio Claudio Andreani; Enzo Di Fabrizio

The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of surface plasmon polaritons by means of adiabatic compression through a metallic tapered waveguide to create strongly enhanced Raman excitation in a region just a few nanometres across. The tapered waveguide can also be used as an atomic force microscope tip. Using the device, topographic, chemical and structural information about silicon nanocrystals may be obtained with a spatial resolution of 7 nm.


Biosensors and Bioelectronics | 2009

Nano-patterned SERS substrate: application for protein analysis vs. temperature.

Gobind Das; Federico Mecarini; Francesco Gentile; Francesco De Angelis; Hg Mohan Kumar; Patrizio Candeloro; Carlo Liberale; Giovanni Cuda; Enzo Di Fabrizio

We have illustrated the fabrication of nano-structures as a surface enhanced Raman scattering (SERS) substrate using electro-plating and electron-beam lithography techniques to obtain an array of gold nanograin-aggregate structures of diameter ranging between 80 and 100 nm with interstitial gap of 10-30 nm. The nanostructure based SERS substrate permits us to have better control and reproducibility on generation of plasmon polaritons. The calculation shows the possible detection of myoglobin concentration down to attomole. This SERS substrate is used to investigate the structural changes of different proteins; lysozyme, ribonuclease-B, bovin serum albumin and myoglobin in the temperature range between -65 and 90 degrees C. The in-depth analysis even for small conformational changes is performed using 2D Raman correlation analysis and difference Raman analysis in order to gain straightforward understanding of proteins undergoing thermodynamical perturbation.


Nano Letters | 2008

A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules.

Francesco De Angelis; M. Patrini; Gobind Das; Ivan Maksymov; Matteo Galli; Luca Businaro; Lucio Claudio Andreani; Enzo Di Fabrizio

Noble metal nanowaveguides supporting plasmon polariton modes are able to localize the optical fields at nanometer level for high sensitivity biochemical sensing devices. Here we report on the design and fabrication of a novel photonic-plasmonic device which demonstrates label-free detection capabilities on single inorganic nanoparticles and on monolayers of organic compounds. In any case, we determine the Raman scattering signal enhancement and the device detection limits that reach a number of molecules between 10 and 250. The device can be straightforwardly integrated in a scanning probe apparatus with the possibility to match topographic and label-free spectroscopic information in a wide range of geometries.


Optics Express | 2010

Graphene in a photonic metamaterial

Nikitas Papasimakis; Zhiqiang Luo; Zexiang Shen; Francesco De Angelis; Enzo Di Fabrizio; A.E. Nikolaenko; N.I. Zheludev

We demonstrate a photonic metamaterial that shows extraordinary sensitivity to the presence of a single atomic layer of graphene on its surface. Metamaterials optical transmission increases multi-fold at the resonance frequency linked to the Fano-type plasmonic mode supported by the periodic metallic nanostructure. The experiments were performed with chemical vapor deposited (CVD) graphene covering a number of size-scaled metamaterial samples with plasmonic modes at different frequencies ranging from 167 to 187 Thz.


Biomaterials | 2010

Cells preferentially grow on rough substrates

Francesco Gentile; Luca Tirinato; Edmondo Battista; Filippo Causa; Carlo Liberale; Enzo Di Fabrizio; Paolo Decuzzi

Substrate nanotopography affects cell adhesion and proliferation and is fundamental to the rational design of bio-adhesives, to tissue engineering and to the development of assays for in-vitro screening. Cell behavior on rough substrates is still elusive, and the results presented in the open literature remain controversial. Here, the proliferation of cells on electrochemically etched silicon substrates with different roughness and nearly similar surface energy was studied over three days with confocal and atomic force microscopy. The surface profile of the substrates is a self-affine fractal with a roughness R(a) growing with the etching time from approximately 2 to 100 nm and a fractal dimension D ranging between about 2 (nominally flat surface) and 2.6. For four cell types, the number of adhering cells and their proliferation rates exhibited a maximum on moderately rough (R(a) approximately 10-45 nm) nearly Brownian (D approximately 2.5) substrates. The observed cell behavior was satisfactorily interpreted within the theory of adhesion to randomly rough solids. These findings demonstrated the importance of nanogeometry in cell stable adhesion and growth, suggesting that moderately rough substrates with large fractal dimension could selectively boost cell proliferation.


Advanced Materials | 2014

3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering.

Manohar Chirumamilla; Andrea Toma; Anisha Gopalakrishnan; Gobind Das; Remo Proietti Zaccaria; Roman Krahne; Eliana Rondanina; Marco Leoncini; Carlo Liberale; Francesco De Angelis; Enzo Di Fabrizio

Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering.


ACS Nano | 2013

Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy

Cristiano D’Andrea; Jörg Bochterle; Andrea Toma; Christian Huck; Frank Neubrech; Elena Messina; Barbara Fazio; Onofrio M. Maragò; Enzo Di Fabrizio; Marc Lamy de la Chapelle; Pietro G. Gucciardi; Annemarie Pucci

In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 μm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm(-1) energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantennas surface is accomplished, with signal enhancement factors of 5×10(2) for SERS (electromagnetic enhancement) and up to 10(5) for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances.


International Journal of Nanomedicine | 2012

Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

Evelina Miele; Gian Paolo Spinelli; Ermanno Miele; Enzo Di Fabrizio; Elisabetta Ferretti; Silverio Tomao; Alberto Gulino

During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.


Physical Review Letters | 2010

Carbon nanotubes in a photonic metamaterial

A.E. Nikolaenko; Francesco De Angelis; Stuart A. Boden; Nikitas Papasimakis; P. Ashburn; Enzo Di Fabrizio; N.I. Zheludev

Hybridization of single-walled carbon nanotubes with plasmonic metamaterials leads to photonic media with an exceptionally strong ultrafast nonlinearity. This behavior is underpinned by strong coupling of the nanotube excitonic response to the weakly radiating Fano-type resonant plasmonic modes that can be tailored by metamaterial design.


Nano Letters | 2013

3D Hollow Nanostructures as Building Blocks for Multifunctional Plasmonics

Francesco De Angelis; Mario Malerba; M. Patrini; Ermanno Miele; Gobind Das; Andrea Toma; Remo Proietti Zaccaria; Enzo Di Fabrizio

We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications.

Collaboration


Dive into the Enzo Di Fabrizio's collaboration.

Top Co-Authors

Avatar

Francesco De Angelis

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Liberale

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Francesco Gentile

Information Technology University

View shared research outputs
Top Co-Authors

Avatar

Gobind Das

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Gerardo Perozziello

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Remo Proietti Zaccaria

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Andrea Toma

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Maria Laura Coluccio

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Andrea Giugni

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge