Eon Joo Park
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eon Joo Park.
The EMBO Journal | 2011
Kenneth D. Harrison; Eon Joo Park; Ningguo Gao; Andrew Kuo; Jeffrey S. Rush; Charles J. Waechter; Mark A. Lehrman; William C. Sessa
Dolichol monophosphate (Dol‐P) functions as an obligate glycosyl carrier lipid in protein glycosylation reactions. Dol‐P is synthesized by the successive condensation of isopentenyl diphosphate (IPP), with farnesyl diphosphate catalysed by a cis‐isoprenyltransferase (cis‐IPTase) activity. Despite the recognition of cis‐IPTase activity 40 years ago and the molecular cloning of the human cDNA encoding the mammalian enzyme, the molecular machinery responsible for regulating this activity remains incompletely understood. Here, we identify Nogo‐B receptor (NgBR) as an essential component of the Dol‐P biosynthetic machinery. Loss of NgBR results in a robust deficit in cis‐IPTase activity and Dol‐P production, leading to diminished levels of dolichol‐linked oligosaccharides and a broad reduction in protein N‐glycosylation. NgBR interacts with the previously identified cis‐IPTase hCIT, enhances hCIT protein stability, and promotes Dol‐P production. Identification of NgBR as a component of the cis‐IPTase machinery yields insights into the regulation of dolichol biosynthesis.
Cell Metabolism | 2014
Eon Joo Park; Kariona A. Grabińska; Ziqiang Guan; Viktor Stránecký; Hana Hartmannová; Kateřina Hodaňová; Veronika Barešová; Jana Sovová; Levente József; Nina Ondruskova; Hana Hansikova; Tomas Honzik; Jiří Zeman; Helena Hůlková; Rong Wen; Stanislav Kmoch; William C. Sessa
Dolichol is an obligate carrier of glycans for N-linked protein glycosylation, O-mannosylation, and GPI anchor biosynthesis. cis-prenyltransferase (cis-PTase) is the first enzyme committed to the synthesis of dolichol. However, the proteins responsible for mammalian cis-PTase activity have not been delineated. Here we show that Nogo-B receptor (NgBR) is a subunit required for dolichol synthesis in yeast, mice, and man. Moreover, we describe a family with a congenital disorder of glycosylation caused by a loss of function mutation in the conserved C terminus of NgBR-R290H and show that fibroblasts isolated from patients exhibit reduced dolichol profiles and enhanced accumulation of free cholesterol identically to fibroblasts from mice lacking NgBR. Mutation of NgBR-R290H in man and orthologs in yeast proves the importance of this evolutionarily conserved residue for mammalian cis-PTase activity and function. Thus, these data provide a genetic basis for the essential role of NgBR in dolichol synthesis and protein glycosylation.
Development | 2014
Monica Y. Lee; Athanasia Skoura; Eon Joo Park; Shira Landskroner-Eiger; Levente József; Amelia K. Luciano; Takahisa Murata; Satish Pasula; Yunzhou Dong; Mohamed Bouaouina; David A. Calderwood; Shawn M. Ferguson; Pietro De Camilli; William C. Sessa
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.
Journal of Biological Chemistry | 2014
Levente József; Keitaro Tashiro; Andrew Kuo; Eon Joo Park; Athanasia Skoura; Sebastian Albinsson; Felix Rivera-Molina; Kenneth D. Harrison; Yasuko Iwakiri; Derek Toomre; William C. Sessa
Background: Store-operated calcium entry requires the redistribution of ER localized STIM1 to ER-PM junctions. Results: Altering ER morphology by modulating reticulon expression affects STIM1 redistribution and consequently calcium entry. Conclusion: Reticulon shaping of the ER is critical for store-operated calcium entry. Significance: Understanding how membrane shaping proteins participate in the regulation of organelle function is essential in elucidating the structure-function interdependence of organelles. Despite recent advances in understanding store-operated calcium entry (SOCE) regulation, the fundamental question of how ER morphology affects this process remains unanswered. Here we show that the loss of RTN4, is sufficient to alter ER morphology and severely compromise SOCE. Mechanistically, we show this to be the result of defective STIM1-Orai1 coupling because of loss of ER tubulation and redistribution of STIM1 to ER sheets. As a functional consequence, RTN4-depleted cells fail to sustain elevated cytoplasmic Ca2+ levels via SOCE and therefor are less susceptible to Ca2+ overload induced apoptosis. Thus, for the first time, our results show a direct correlation between ER morphology and SOCE and highlight the importance of RTN4 in cellular Ca2+ homeostasis.
EMBO Reports | 2016
Eon Joo Park; Kariona A. Grabińska; Ziqiang Guan; William C. Sessa
NgBR is a transmembrane protein identified as a Nogo‐B‐interacting protein and recently has been shown to be a subunit required for cis‐prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial‐specific NgBR knockout embryos. Here, we show that endothelial‐specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE‐cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo‐B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.
Nature Communications | 2016
Jan R. Kraehling; John H. Chidlow; Chitra Rajagopal; Michael G. Sugiyama; Joseph W. Fowler; Monica Y. Lee; Xinbo Zhang; Cristina M. Ramírez; Eon Joo Park; Bo Tao; Keyang Chen; Leena Kuruvilla; Bruno Larrivée; Ewa Folta-Stogniew; Roxana Ola; Noemi Rotllan; Wenping Zhou; Michael W. Nagle; Joachim Herz; Kevin Jon Williams; Anne Eichmann; Warren L. Lee; Carlos Fernández-Hernando; William C. Sessa
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.
Journal of Biological Chemistry | 2002
Woo Jae Kim; Eon Joo Park; Hyojin Lee; Rho Hyun Seong; Sang Dai Park
In eukaryotes, Rad51 and Rad52 are two key components of homologous recombination and recombinational repair. These two proteins interact with each other. Here we investigated the role of interaction between Rhp51 and Rad22, the fission yeast homologs of Rad51 and Rad52, respectively, on the function of each protein. We identified a direct association between the two proteins and their self-interactions both in vivo and in vitro. We also determined the binding domains of each protein that mediate these interactions. To characterize the role of Rhp51-Rad22 interaction, we used random mutagenesis to identify the mutants Rhp51 and Rad22, which cannot interact each other. Interestingly, we found that mutant Rhp51 protein, which cannot interact with either Rad22 or Rti1 (G282D), lost its DNA repair ability. In contrast, mutant Rad22 proteins, which cannot specifically bind to Rhp51 (S379L and P381L), maintained their DNA repair ability. These results suggest that the interaction between Rhp51 and Rad22 is crucial for the recombinational repair function of Rhp51. However, the significance of this interaction on the function of Rad22 remains to be characterized further.
Science Signaling | 2015
Mauro Siragusa; Florian Fröhlich; Eon Joo Park; Michael Schleicher; Tobias C. Walther; William C. Sessa
SDF2 promotes the activation of the enzymes that produce the gasotransmitter nitric oxide. Maximizing nitric oxide production The gas nitric oxide causes blood vessels to relax and blood pressure to drop. In endothelial cells, the enzyme eNOS produces nitric oxide. The chaperone protein Hsp90 promotes the activation of eNOS by enhancing its phosphorylation. Siragusa et al. found that SDF2 bound eNOS, enhancing the phosphorylation of eNOS and NO production by promoting the binding of eNOS to Hsp90. Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells.
Biochemical Journal | 2002
Woo J. Kim; Hyojin Lee; Eon Joo Park; Seung Hwan Hong; Sang D. Park
Rhp51, a RecA and Rad51 homologue of Schizosaccharomyces pombe, plays a pivotal role in homologous recombination and recombinational repair. It has a set of the well-conserved type A and type B ATP-binding motifs, which are highly conserved in all RecA homologues. In a previous study [Kim, Lee, Park, Park and Park (2001) Nucleic Acids Res. 29, 1724-1732], we reported that a single mutation of the conserved lysine in A motif [Lys(155)-->Ala (K155A)] destroyed the DNA repair ability of Rhp51 and that overexpression of this mutant protein conferred dominant negativity. In the present paper, we investigated DNA-binding properties of recombinant Rhp51 and its mutant proteins. Purified Rhp51 protein showed ATP-dependent double- and single-strand DNA-binding activities. To characterize the role of ATP-binding motifs, we generated Rhp51 K155A and Rhp51 Asp(244)-->Gln (D244Q), which have a single amino acid substitution in A and B motifs respectively. Interestingly, K155A and D244Q mutations impaired ATP-dependent DNA binding in a different manner. K155A lost the DNA binding itself, whereas D244Q maintained the binding ability but lost the ATP dependency. However, despite the difference in DNA-binding ability, both mutations failed to rescue the methylmethane sulphonate and UV sensitivity of the rhp51Delta mutant. Together, these results suggested that not only the DNA binding but also the ATP dependence in DNA binding is required for proper in vivo functioning of Rhp51.
bioRxiv | 2017
Kariona A. Grabińska; Ban H. Edani; Eon Joo Park; Jan R. Kraehling; Bill Sessa
Cis-Prenyltransferases (cisPTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cisPT is the first enzyme committed to the synthesis of dolichyl-phosphate (DolP). DolP is obligate lipid carrier in protein glycosylation reactions in mammals. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS) generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently our group discovered that unlike UPPS, mammalian cisPT is a heteromer consisting of NgBR (NUS1) and hCIT (DHDDS) subunits and this composition has been confirmed in plants and fungal cisPTs. Here, we establish the first purification system for heteromeric cisPT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RxG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla.