Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Equar Taka is active.

Publication


Featured researches published by Equar Taka.


Food and Chemical Toxicology | 2012

Diallyl trisulfide as an inhibitor of benzo(a)pyrene-induced precancerous carcinogenesis in MCF-10A cells

Yasmeen M. Nkrumah-Elie; Jayne S. Reuben; Alicia Hudson; Equar Taka; Ramesh B. Badisa; Tiffany Ardley; Bridg’ette Israel; Sakeenah Y. Sadrud-Din; Ebenezer T. Oriaku; Selina Darling-Reed

Diallyl trisulfide (DATS) is a garlic organosulfide that is toxic to cancer cells, however, little is known about its effect in the initiation phase of carcinogenesis. We sought to determine whether DATS could inhibit the carcinogen, benzo(a)pyrene (BaP), from inducing precancerous activity, in vitro. MCF-10A cells were either pre-treated (PreTx) or concurrently treated (CoTx) with 1 μM BaP, and 6 or 60 μM DATS for up to 24h. The DATS 6 and 60 μM CoTx inhibited BaP-induced cell proliferation by an average of 71.1% and 120.8%, respectively, at 6h. The 60 μM DATS pretreatment decreased BaP-induced G2/M cell cycle transition by 127%, and reduced the increase in cells in the S-phase by 42%; whereas 60 μM DATS CoTx induced a 177% increase in cells in G1. DATS effectively inhibited (P<0.001) BaP-induced peroxide formation by at least 54%, which may have prevented the formation of BaP-induced DNA strand breaks. In this study, we reveal mechanisms involved in DATS inhibition of BaP-induced carcinogenesis, including inhibition of cell proliferation, regulation of cell cycle, attenuation of ROS formation, and inhibition of DNA damage. At the doses evaluated, DATS appears to be an effective attenuator of BaP-induced breast carcinogenesis, in vitro.


Journal of Neuroimmunology | 2015

Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells

Equar Taka; Elizabeth Mazzio; Carl B. Goodman; Natalie Redmon; Hernan Flores-Rozas; Renee Reams; Selina Darling-Reed; Karam F.A. Soliman

Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokines IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate the usefulness of TQ in delaying the onset of inflammation-mediated neurodegenerative disorders involving activated microglia cells.


Neurochemical Research | 2016

The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells

Makini K. Cobourne-Duval; Equar Taka; Patricia Mendonca; David Bauer; Karam F.A. Soliman

Both neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. During chronic activation of the microglial cells, the induced release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines have been implicated in several neurodegenerative diseases such as Alzheimer’s disease. Thymoquinone (TQ), a major bioactive compound of the natural product Nigella sativa seed, has been shown to be effective against numerous oxidative stress-induced and inflammatory disorders as well as possess neuroprotective properties. In this study, we investigated the antioxidant effects of TQ on LPS/IFNγ or H2O2-activated BV-2 microglia by assessing the levels of specific oxidative stress markers, the activities of selected antioxidant enzymes, as well as profiling 84 key genes related to oxidative stress via real-time reverse transcription (RT2) PCR array. Our results showed that in the LPS/IFNγ-activated microglia TQ significantly decreased the cellular production of both superoxide and nitric oxide fourfold (p < 0.0001) and sixfold (p < 0.0001), respectfully. In the H2O2-activated microglia, TQ also significantly decreased the cellular production of superoxide threefold (p < 0.0001) and significantly decreased hydrogen peroxide levels ~20 % (p < 0.05). Moreover, ΤQ treatment significantly decreased the levels oxidative stress in the activated BV-2 as evidenced by the assessed levels of lipid hydroperoxides and glutathione. TQ significantly decreased the levels of lipid hydroperoxides twofold (p < 0.0001) and significantly increased the levels of antioxidant glutathione 2.5-fold (p < 0.0001) in the LPS/IFNγ-activated BV-2 cells. In the H2O2-activated microglia, TQ significantly decreased lipid hydroperoxides eightfold (p < 0.0001) and significantly increased glutathione 15 % (p < 0.05). Activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in the TQ-treated microglial cells also reflected a reduced oxidative stress status in the cellular environment. SOD and CAT activities were sixfold (p < 0.0001) and fivefold (p < 0.0001) lower, respectfully, for the LPS/INFγ-activated microglia treated with TQ in comparison to those that were not. For the H2O2-activated microglia treated with TQ, SOD and CAT activities were fivefold (p < 0.0001) and threefold (p < 0.01) lower, respectfully, compared to the untreated. Furthermore, RT2 PCR array profiling of the selected 84 genes related to oxidative stress confirmed that TQ treatment in the LPS/IFNγ-activated microglia downregulates specific pro-oxidant genes, upregulates specific anti-oxidant genes, and enhances the up- or downregulation of specific genes related to the cells’ natural antioxidant defense against LPS/IFNγ activation. These findings suggest that TQ may be utilized as an effective therapeutic agent for delaying the onset and/or slowing/preventing the progression of microglia-derived neurodegeneration propagated by excessive oxidative stress in the CNS.


Nutrition and Cancer | 2012

The attenuation of early benzo(a)pyrene-induced carcinogenic insults by diallyl disulfide (DADS) in MCF-10A cells

Yasmeen M. Nkrumah-Elie; Jayne S. Reuben; Alicia Hudson; Equar Taka; Ramesh B. Badisa; Tiffany Ardley; Bridg’ette Israel; Sakeenah Y. Sadrud-Din; Ebenezer T. Oriaku; Selina Darling-Reed

Diallyl disulfide (DADS), a garlic organosulfur compound, has been researched as a cancer prevention agent; however, the role of DADS in the suppression of cancer initiation in nonneoplastic cells has not been elucidated. To evaluate DADS inhibition of early carcinogenic events, MCF-10A cells were pretreated (PreTx) with DADS followed by the ubiquitous carcinogen benzo(a)pyrene (BaP), or cotreated (CoTx) with DADS and BaP for up to 24 h. The cells were evaluated for changes in cell viability/proliferation, cell cycle, induction of peroxide formation, and DNA damage. BaP induced a statistically significant increase in cell proliferation at 6 h, which was attenuated with DADS CoTx. PreTx with 6 and 60 μM of DADS inhibited BaP-induced G2/M arrest by 68% and 78%, respectively. DADS, regardless of concentration or method, inhibited BaP-induced extracellular aqueous peroxide formation within 24 h. DADS attenuated BaP-induced DNA single-strand breaks at all time points through both DADS Pre- and CoTx, with significant inhibition for all treatments sustained after 6 h. DADS was effective in inhibiting BaP-induced cell proliferation, cell cycle transitions, reactive oxygen species, and DNA damage in a normal cell line, and thus may inhibit environmentally induced breast cancer initiation.


Neurotoxicology | 2012

Microarray genomic profile of mitochondrial and oxidant response in manganese chloride treated PC12 cells

Equar Taka; Elizabeth Mazzio; Karam F.A. Soliman; Renee Reams

Environmental or occupational exposure to high levels of manganese (Mn) can lead to manganism, a symptomatic neuro-degenerative disorder similar to idiopathic Parkinsons disease. The underlying mechanism of Mn neurotoxicity remains unclear. In this study, we evaluate the primary toxicological events associated with MnCl(2) toxicity in rat PC12 cells using whole genome cDNA microarray, RT-PCR, Western blot and functional studies. The results show that a sub-lethal dose range (38-300 μM MnCl(2)) initiated slight metabolic stress evidenced by heightened glycolytic rate and induction of enolase/aldolase - gene expression. The largest shift observed in the transcriptome was MnCl(2) induction of heme-oxygenase 1 (HO-1) [7.7 fold, p<0.001], which was further corroborated by RT-PCR and Western blot studies. Concentrations in excess of 300 μM corresponded to dose dependent loss of cell viability which was associated with enhanced production of H(2)O(2) concomitant to elevation of gene expression for diverse antioxidant enzymes; biliverdin reductase, arsenite inducible RNA associated protein, dithiolethione-inducible gene-1 (DIG-1) and thioredoxin reductase 1. Moreover, Mn initiated significant reduction of gene expression of mitochondrial glutaryl-coenzyme A dehydrogenase (GCDH), an enzyme involved with glutaric acidemia, oxidative stress, lipid peroxidation and striatal degeneration observed in association with severe dystonic-dyskinetic movement disorder. Future research will be required to elucidate a defined role for HO-1 and GCDH in Mn toxicity.


Journal of Interferon and Cytokine Research | 2009

CCL26-Targeted siRNA Treatment of Alveolar Type II Cells Decreases Expression of CCR3-Binding Chemokines and Reduces Eosinophil Migration: Implications in Asthma Therapy

Younes J. Errahali; Equar Taka; Barack O. Abonyo; Ann S. Heiman

The underlying inflammation present in chronic airway diseases is orchestrated by increased expression of CC chemokines that selectively recruit leukocyte populations into the pulmonary system. Human CCL26 signals through CC chemokine receptor 3 (CCR3), is dramatically upregulated in challenged asthmatics, and stimulates recruitment of eosinophils (EOSs) and other leukocytes. CCL26 participates in regulation of its receptor CCR3 and modulates expression of a variety of chemokines in alveolar type II cells. Utilizing the A549 alveolar type II epithelial cell culture model, we carried out studies to test the hypothesis that CCL26-siRNA treatment of these cells would ameliorate Th2-driven release of the eotaxins and other CCR3 ligands that would, in turn, decrease recruitment and activation of EOSs. Results demonstrate that CCL26-siRNA treatments decreased interleukin-4-induced CCL26 and CCL24 expression by >70%. CCL26-directed small-interfering RNA (siRNA) treatments significantly decreased release of CCL5 (RANTES), CCL15 (MIP-1δ), CCL8 (MCP-2), and CCL13 (MCP-4). In bioactivity assays it was shown that EOS migration and activation were reduced up to 80% and 90%, respectively, when exposed to supernatants of CCL26-siRNA-treated cells. These results provide evidence that CCL26 may be an appropriate target for development of new therapeutic agents designed to alleviate the underlying inflammation associated with chronic diseases of the airways.


BMC Complementary and Alternative Medicine | 2016

Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS from E. coli O111:B4) activated macrophages and microglial cells; focus on sepsis

Elizabeth Mazzio; Nan Li; David Bauer; Patricia Mendonca; Equar Taka; Mohammed Darb; Leeshawn Thomas; Henry N. Williams; Karam F.A. Soliman

BackgroundAcute systemic inflammatory response syndrome arising from infection can lead to multiple organ failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson’s disease, Alzheimer’s disease and arthritis). Given the known limitations in Western medicine to treat a broad range of inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in complementary and alternative medicines (CAMs) to achieve these means.MethodsA high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices, teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4) monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7 1x106 CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody arrays. Findings were corroborated by independent ELISAs and NO2–/iNOS expression quantified using the Griess Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which could lead to false positives.ResultsThe data show that activated BV-2 microglia cells (+ LPS 1μg/ml) release >10-fold greater IL-6, MIP1/2, RANTES and nitric oxide (NO2–), where RAW 264.7 macrophages (+ LPS 1μg/ml) produced > 10-fold rise in sTNFR2, MCP-1, IL-6, GCSF, RANTES and NO2–. Data validation studies establish hydrocortisone and dexamethasone as suppressing multiple pro-inflammatory processes, where L-NIL suppressed NO2–, but had no effect on iNOS expression or IL-6. The screening results demonstrate relative few valid hits with anti-inflammatory effects at < 250μg/ml for the following: Bay Leaf (Laurus nobilis), Elecampagne Root (Inula helenium), Tansy (Tanacetum vulgare),Yerba (Eriodictyon californicum) and Centipeda (Centipeda minima), Ashwagandha (Withania somnifera), Feverfew (Tanacetum parthenium), Rosemary (Rosmarinus officinalis), Turmeric Root (Curcuma Longa), Osha Root (Ligusticum porteri), Green Tea (Camellia sinensis) and constituents: cardamonin, apigenin, quercetin, biochanin A, eupatorin, (-)-epigallocatechin gallate (EGCG) and butein. Natural products lethal against [E. coli 0157:H7] where the LC50 < 100 μg/ml included bioactive silver hydrosol-Argentyn 23, green tea (its constituents EGCG > Polyphenon 60 > (-)-Gallocatechin > Epicatechin > (+)-Catechin), Grapeseed Extract (Vitis vinifera), Chinese Gallnut (its constituents gallic acid > caffeic acid) and gallic acid containing plants such as Babul Chall Bark (Acacia Arabica), Arjun (Terminalia Arjuna) and Bayberry Root Bark (Morella Cerifera).ConclusionsThese findings emphasize and validate the previous work of others and identify the most effective CAM anti-inflammatory, antibacterial compounds using these models. Future work will be required to evaluate potential combination strategies for long-term use to prevent chronic inflammation and possibly lower the risk of sepsis in immunocompromised at risk populations.


Neurotoxicology | 2017

Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice

James Johnson; Edward Pajarillo; Equar Taka; Romonia R. Reams; Deok Soo Son; Michael Aschner; Eunsook Lee

HighlightsValproic acid and sodium butyrate attenuate manganese (Mn)‐induced decrease in locomotor activity in mice.Valproic acid and sodium butyrate attenuate Mn‐induced decrease in motor coordination in mice.Valproic acid and sodium butyrate attenuate Mn‐induced reduction of GLAST and GLT‐1 expression in the mouse brain. ABSTRACT Manganese (Mn) is an essential trace element, but chronic overexposure to this metal, either environmentally or occupationally may cause manganism, a disease analogous to Parkinsons disease. Inhibitors of histone deacetylases, such as valproic acid (VPA) and sodium butyrate (NaB) exert neuroprotective effects in various animal models of neurological disorders. Thus, the present study investigated whether VPA or NaB prevent Mn‐induced neurotoxicity by assessing locomotor activities and expression of astrocytic glutamate transporters, glutamate transporter 1 (GLT‐1) and glutamate aspartate transporter (GLAST), in C57BL/6 mice. C57BL/6 mice were pretreated with VPA (200 mg/kg, i.p.) or NaB (1200 mg/kg, i.p.) prior to intranasal instillation of Mn (30 mg/kg) continually for 21 days, followed by open‐field and rota‐rod behavioral tests and analyses of astrocytic glutamate transporters GLT‐1 and GLAST protein/mRNA levels. The results showed that Mn significantly decreased locomotor activity as determined by total distance travelled, stereotypic and ambulatory counts. Mn also significantly decreased rota‐rod activity reflecting altered motor coordination. Pretreatment with VPA and NaB with Mn reversed the effects of Mn on the locomotor activity and motor coordination. VPA and NaB also attenuated the Mn‐induced decrease in GLT‐1 and GLAST mRNA and protein levels in the cerebral cortical and cerebellar regions of mice. These results suggest that VPA and NaB exert protective effects against Mn toxicity seem in vitro are also shown in vivo. VPA and NaB pretreatment in mice enhancing astrocytic glutamate transporter GLT‐1 expression as well as locomotor activities. Future research endeavors are warranted to determine if the therapeutic potential of VPA and NaB is via common molecular mechanism, namely, inhibition of histone deacetylases.


Journal of Neuroimmunology | 2017

Natural product HTP screening for attenuation of cytokine-induced neutrophil chemo attractants (CINCs) and NO2− in LPS/IFNγ activated glioma cells

Elizabeth Mazzio; David Bauer; Patricia Mendonca; Equar Taka; Karam F.A. Soliman

Chronic and acute central nervous system (CNS) inflammation are contributors toward neurological injury associated with head trauma, stroke, infection, Parkinsons or Alzheimers disease. CNS inflammatory illnesses can also contribute toward risk of developing glioblastoma multiforme (GBM). With growing public interest in complementary and alternative medicines (CAMs), we conduct a high throughput (HTP) screening of >1400 natural herbs, plants and over the counter (OTC) products for anti-inflammatory effects on lipopolysaccharide (LPS)/interferon gamma (IFNγ) activated C6 glioma cells. Validation studies were performed showing a pro-inflammatory profile of [LPS 3 µg/ml/ IFNγ 3 ng/ml] consistent with greater release [>8.5 fold] of MCP-1, NO2-, cytokine-induced neutrophil chemo-attractants (CINC) 1, CINC 2a and CINC3. The data show no changes to the following, IL-13, TNF-a, fracktaline, leptin, LIX, GM-CSF, ICAM1, L-Selectin, activin A, agrin, IL-1α, MIP-3a, B72/CD86, NGF, IL-1b, MMP-8, IL-1 R6, PDGF-AA, IL-2, IL-4, prolactin R, RAGE, IL-6, Thymus Chemokine-1, CNTF,IL-10 or TIMP-1. A HTP screening was conducted, where we employ an in vitro efficacy index (iEI) defined as the ratio of toxicity (LC50)/anti-inflammatory potency (IC50). The iEI was precautionary to ensure biological effects were occurring in fully viable cells (ratio > 3.8) independent of toxicity. Using NO2- as a guideline molecule, the data show that 1.77% (25 of 1410 tested) had anti-inflammatory effects with iEI ratios >3.8 and IC50s <250µg/ml. These include reference drugs (hydrocortisone, dexamethasone N6-(1-iminoethyl)-l-lysine and NSAIDS: diclofenac, tolfenamic acid), a histone deacetylase inhibitor (apicidin) and the following natural products; Ashwaganda (Withania somnifera), Elecampagne Root (Inula helenium), Feverfew (Tanacetum parthenium), Green Tea (Camellia sinensis), Turmeric Root (Curcuma longa) Ganthoda (Valeriana wallichii), Tansy (Tanacetum vulgare), Maddar Root (Rubia tinctoria), Red Sandle wood (Pterocarpus santalinus), Bay Leaf (Laurus nobilis, Lauraceae), quercetin, cardamonin, fisetin, EGCG, biochanin A, galangin, apigenin and curcumin. The herb with the largest iEI was Ashwaganda where the IC50/LC50 was 11.1/>1750.0μg/ml, and the compound with the greatest iEI was quercetin where the IC50/LC50 was 10.0/>363.6μg/ml. These substances also downregulate the production of iNOS expression and attenuate CINC-3 release. In summary, this HTP screening provides guideline information about the efficacy of natural products that could prevent inflammatory processes associated with neurodegenerative disease and aggressive glioma tumor growth.


Journal of Neuroimmunology | 2017

The attenuating effects of 1,2,3,4,6 penta-O-galloyl-β-d-glucose on inflammatory cytokines release from activated BV-2 microglial cells

Patricia Mendonca; Equar Taka; David Bauer; Makini K. Cobourne-Duval; Karam F.A. Soliman

Alzheimers disease (AD) is the most common cause of neurodegeneration and dementia in the elderly. Dysregulated, chronic activation of microglia, the brains resident macrophages, induces the release of excessive amounts of pro-inflammatory cytokines which has been implicated in the early stages of AD pathology. Therefore, suppressing the expression of these inflammatory mediators may decrease or delay the progression of AD. Many natural compounds derived from plants have shown anti-inflammatory activity. The naturally occurring 1,2,3,4,6 Penta-O-Galloyl-β-d-Glucose (PGG), is a polyphenolic compound highly enriched in Rhus chinensis Millplant. It is a potent anti-inflammatory agent that act through the inhibition of many cytokines in different experimental models. In the present study, we investigated the role of PGG as an anti-inflammatory agent in LPS/IFNγ activated BV-2 microglia cells. Mouse cytokine antibody arrays were used to assess the effect of PGG on the release of pro-inflammatory cytokines, and ELISA experiments were performed to validate the results from the arrays. The results obtained from the cytokine arrays, and ELISA assays showed that PGG decreased the expression of monocyte chemotactic protein-5 (MCP-5) 8-fold, and pro-matrix metalloproteinase 9 (Pro MMP-9) 10-fold. Both of these cytokines are upregulated during the inflammatory process and have been shown to be involved in brain injury, inflammation, and neurodegeneration. Therefore, these findings suggest that the anti-inflammatory effect of PGG on activated microglia involving the attenuation of MCP-5 and Pro MMP-9 cytokines.

Collaboration


Dive into the Equar Taka's collaboration.

Researchain Logo
Decentralizing Knowledge