Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Era L. Pogosova-Agadjanyan is active.

Publication


Featured researches published by Era L. Pogosova-Agadjanyan.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Circulating microRNAs as stable blood-based markers for cancer detection

Patrick S. Mitchell; Rachael K. Parkin; Evan M. Kroh; Brian R. Fritz; Stacia K. Wyman; Era L. Pogosova-Agadjanyan; Amelia Peterson; Jennifer Noteboom; Kathy O'Briant; April Allen; Daniel W. Lin; Nicole Urban; Charles W. Drescher; Beatrice S. Knudsen; Derek L. Stirewalt; Robert Gentleman; Robert L. Vessella; Peter S. Nelson; Daniel B. Martin; Muneesh Tewari

Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (≈22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma

Jason D. Arroyo; John R. Chevillet; Evan M. Kroh; Ingrid K. Ruf; Colin C. Pritchard; Donald F. Gibson; Patrick S. Mitchell; Christopher F. Bennett; Era L. Pogosova-Agadjanyan; Derek L. Stirewalt; Jonathan F. Tait; Muneesh Tewari

MicroRNAs (miRNAs) circulate in the bloodstream in a highly stable, extracellular form and are being developed as blood-based biomarkers for cancer and other diseases. However, the mechanism underlying their remarkable stability in the RNase-rich environment of blood is not well understood. The current model in the literature posits that circulating miRNAs are protected by encapsulation in membrane-bound vesicles such as exosomes, but this has not been systematically studied. We used differential centrifugation and size-exclusion chromatography as orthogonal approaches to characterize circulating miRNA complexes in human plasma and serum. We found, surprisingly, that the majority of circulating miRNAs cofractionated with protein complexes rather than with vesicles. miRNAs were also sensitive to protease treatment of plasma, indicating that protein complexes protect circulating miRNAs from plasma RNases. Further characterization revealed that Argonaute2 (Ago2), the key effector protein of miRNA-mediated silencing, was present in human plasma and eluted with plasma miRNAs in size-exclusion chromatography. Furthermore, immunoprecipitation of Ago2 from plasma readily recovered non–vesicle-associated plasma miRNAs. The majority of miRNAs studied copurified with the Ago2 ribonucleoprotein complex, but a minority of specific miRNAs associated predominantly with vesicles. Our results reveal two populations of circulating miRNAs and suggest that circulating Ago2 complexes are a mechanism responsible for the stability of plasma miRNAs. Our study has important implications for the development of biomarker approaches based on capture and analysis of circulating miRNAs. In addition, identification of extracellular Ago2–miRNA complexes in plasma raises the possibility that cells release a functional miRNA-induced silencing complex into the circulation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Quantitative and stoichiometric analysis of the microRNA content of exosomes

John R. Chevillet; Qing Kang; Ingrid K. Ruf; Hilary Briggs; Lucia Vojtech; Sean M. Hughes; Heather H. Cheng; Jason D. Arroyo; Emily K. Meredith; Emily N. Gallichotte; Era L. Pogosova-Agadjanyan; Colm Morrissey; Derek L. Stirewalt; Florian Hladik; Evan Y. Yu; Celestia S. Higano; Muneesh Tewari

Significance Exosomes have been a subject of great interest in recent years, especially in the context of the microRNAs (miRNAs) that they contain. Exosome-mediated miRNA transfer between cells has been proposed to be a mechanism for intercellular signaling and exosome-associated miRNAs in biofluids have been suggested as potential minimally invasive biomarkers for multiple human disease states. Remarkably, we show here that most exosomes derived from standard preparations do not harbor many copies of miRNA molecules. These findings suggest a reevaluation of current models of the mechanism of exosome-mediated miRNA communication and indicate that stoichiometric analysis will be valuable for the study of other populations of extracellular vesicles and their associated RNAs as well. Exosomes have been proposed as vehicles for microRNA (miRNA) -based intercellular communication and a source of miRNA biomarkers in bodily fluids. Although exosome preparations contain miRNAs, a quantitative analysis of their abundance and stoichiometry is lacking. In the course of studying cancer-associated extracellular miRNAs in patient blood samples, we found that exosome fractions contained a small minority of the miRNA content of plasma. This low yield prompted us to perform a more quantitative assessment of the relationship between miRNAs and exosomes using a stoichiometric approach. We quantified both the number of exosomes and the number of miRNA molecules in replicate samples that were isolated from five diverse sources (i.e., plasma, seminal fluid, dendritic cells, mast cells, and ovarian cancer cells). Regardless of the source, on average, there was far less than one molecule of a given miRNA per exosome, even for the most abundant miRNAs in exosome preparations (mean ± SD across six exosome sources: 0.00825 ± 0.02 miRNA molecules/exosome). Thus, if miRNAs were distributed homogenously across the exosome population, on average, over 100 exosomes would need to be examined to observe one copy of a given abundant miRNA. This stoichiometry of miRNAs and exosomes suggests that most individual exosomes in standard preparations do not carry biologically significant numbers of miRNAs and are, therefore, individually unlikely to be functional as vehicles for miRNA-based communication. We propose revised models to reconcile the exosome-mediated, miRNA-based intercellular communication hypothesis with the observed stoichiometry of miRNAs associated with exosomes.


Genes, Chromosomes and Cancer | 2008

Identification of genes with abnormal expression changes in acute myeloid leukemia

Derek L. Stirewalt; Soheil Meshinchi; Kenneth J. Kopecky; Wenhong Fan; Era L. Pogosova-Agadjanyan; Julia H. Engel; Michelle R. Cronk; Kathleen Shannon Dorcy; Amy R. McQuary; David M. Hockenbery; Brent L. Wood; Shelly Heimfeld; Jerald P. Radich

Acute myeloid leukemia (AML) is one of the most common and deadly forms of hematopoietic malignancies. We hypothesized that microarray studies could identify previously unrecognized expression changes that occur only in AML blasts. We were particularly interested in those genes with increased expression in AML, believing that these genes may be potential therapeutic targets. To test this hypothesis, we compared gene expression profiles between normal hematopoietic cells from 38 healthy donors and leukemic blasts from 26 AML patients. Normal hematopoietic samples included CD34+ selected cells (N = 18), unselected bone marrows (N = 10), and unselected peripheral bloods (N = 10). Twenty genes displayed AML‐specific expression changes that were not found in the normal hematopoietic cells. Subsequent analyses using microarray data from 285 additional AML patients confirmed expression changes for 13 of the 20 genes. Seven genes (BIK, CCNA1, FUT4, IL3RA, HOMER3, JAG1, WT1) displayed increased expression in AML, while 6 genes (ALDHA1A, PELO, PLXNC1, PRUNE, SERPINB9, TRIB2) displayed decreased expression. Quantitative RT/PCR studies for the 7 over‐expressed genes were performed in an independent set of 9 normal and 21 pediatric AML samples. All 7 over‐expressed genes displayed an increased expression in the AML samples compared to normals. Three of the 7 over‐expressed genes (WT1, CCNA1, and IL3RA) have already been linked to leukemogenesis and/or AML prognosis, while little is known about the role of the other 4 over‐expressed genes in AML. Future studies will determine their potential role in leukemogenesis and their clinical significance. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045‐2257/suppmat.


Leukemia | 2004

A distinctive nuclear morphology in acute myeloid leukemia is strongly associated with loss of HLA-DR expression and FLT3 internal tandem duplication

Steven J. Kussick; Derek L. Stirewalt; H S Yi; K M Sheets; Era L. Pogosova-Agadjanyan; S Braswell; T H Norwood; Jerry Radich; Brent L. Wood

In a 5-year survey of nonpromyelocytic/nonmonocytic acute myeloid leukemias (AMLs) diagnosed in the University of Washington Hematopathology Laboratory, we identified 19 cases containing distinctive, cup-like nuclear indentation in 10% or more of the blasts (‘AML-cuplike’). Fourteen of these cases (74%) demonstrated near-complete loss of HLA-DR expression, while the other five cases showed partial loss of HLA-DR. A total of 16 of the cases (84%) demonstrated internal tandem duplication (ITD) of the Flt3 gene. When compared to a selected set of AMLs lacking this nuclear morphology, AML-cuplike was significantly more likely to lack HLA-DR and CD34 expression, to express CD123 without CD133, to have a normal karyotype, and to harbor the Flt3 ITD. To characterize AML-cuplike in an unselected series of AMLs, we analyzed 42 consecutive nonpromyelocytic/nonmonocytic AMLs diagnosed in our laboratory during a 6-month period in 2002. Strikingly, in this unselected series, there was a statistically significant coincidence of invaginated nuclear morphology, loss of HLA-DR, and presence of the Flt3 ITD beyond that expected if these three features were unrelated, suggesting that AMLs with these three features may represent a distinct AML subset.


British Journal of Haematology | 2004

Novel FLT3 point mutations within exon 14 found in patients with acute myeloid leukaemia

Derek L. Stirewalt; Soheil Meshinchi; Steven J. Kussick; Kayla M. Sheets; Era L. Pogosova-Agadjanyan; Cheryl L. Willman; Jerald P. Radich

Internal tandem duplications in FLT3 are the most common mutation in acute myeloid leukaemia (AML), with agarose gel electrophoresis of polymerase chain reaction products (PCR/agarose) being the screening method of choice for these mutations. As PCR/agarose screening does not detect small mutations, single‐stranded conformational polymorphism analyses (PCR/SSCP) were used in an attempt to identify previously unrecognized point mutations in FLT3 exons 14 and 15 of 140 AML patients, using newly designed primers that anneal within intron sequences. Novel missense point mutations were found in exon 14, suggesting additional investigations should be performed in AML and other haematopoietic malignancies, using this sensitive technique.


Blood | 2009

The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells

Vivian G. Oehler; Katherine A. Guthrie; Carrie L. Cummings; Kathleen M. Sabo; Brent L. Wood; Ted Gooley; Taimei Yang; Mirjam T. Epping; Yaping Shou; Era L. Pogosova-Agadjanyan; Paula Ladne; Derek L. Stirewalt; Janis L. Abkowitz; Jerald P. Radich

The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly, these observations suggest that PRAME is a target for both prognostic and therapeutic applications.


British Journal of Haematology | 2008

Tumour necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS?

Derek L. Stirewalt; Andrew J. Mhyre; Mario Marcondes; Era L. Pogosova-Agadjanyan; Nissa Abbasi; Jerald P. Radich; H. Joachim Deeg

Aberrant regulation of the tumour necrosis factor alpha gene (TNF) and stroma‐derived signals are involved in the pathophysiology of myelodysplasia. Therefore, KG1a, a myeloid leukaemia cell line, was exposed to Tnf in the absence or presence of either HS‐5 or HS‐27a cells, two human stroma cell lines. While KG1a cells were resistant to Tnf‐induced apoptosis in the absence of stroma cells, Tnf‐promoted apoptosis of KG1a cells in co‐culture experiments with stroma cells. To investigate the Tnf‐induced signals from the stroma cells, we examined expression changes in HS‐5 and HS‐27a cells after Tnf exposure. DNA microarray studies found both discordant and concordant Tnf‐induced expression responses in the two stroma cell lines. Tnf promoted an increased mRNA expression of pro‐inflammatory cytokines [e.g. interleukin (IL)6, IL8 and IL32]. At the same time, Tnf decreased the mRNA expression of anti‐apoptotic genes (e.g. BCL2L1) and increased the mRNA expression of pro‐apoptotic genes (e.g. BID). Overall, the results suggested that Tnf induced a complex set of pro‐inflammatory and pro‐apoptotic signals in stroma cells that promote apoptosis in malignant myeloid clones. Additional studies will be required to determine which of these signals are critical for the induction of apoptosis in the malignant clones. Those insights, in turn, may point the way to novel therapeutic approaches.


Journal of Clinical Oncology | 2015

Prognostic Significance of NPM1 Mutations in the Absence of FLT3–Internal Tandem Duplication in Older Patients With Acute Myeloid Leukemia: A SWOG and UK National Cancer Research Institute/Medical Research Council Report

Fabiana Ostronoff; Megan Othus; Michelle Lazenby; Elihu H. Estey; Frederick R. Appelbaum; Anna Evans; John E. Godwin; Amanda F. Gilkes; Kenneth J. Kopecky; Alan Kenneth Burnett; Alan F. List; Min Fang; Vivian G. Oehler; Stephen H. Petersdorf; Era L. Pogosova-Agadjanyan; Jerald P. Radich; Cheryl L. Willman; Soheil Meshinchi; Derek L. Stirewalt

PURPOSE Younger patients with acute myeloid leukemia (AML) harboring NPM1 mutations without FLT3-internal tandem duplications (ITDs; NPM1-positive/FLT3-ITD-negative genotype) are classified as better risk; however, it remains uncertain whether this favorable classification can be applied to older patients with AML with this genotype. Therefore, we examined the impact of age on the prognostic significance of NPM1-positive/FLT3-ITD-negative status in older patients with AML. PATIENTS AND METHODS Patients with AML age ≥ 55 years treated with intensive chemotherapy as part of Southwest Oncology Group (SWOG) and UK National Cancer Research Institute/Medical Research Council (NCRI/MRC) trials were evaluated. A comprehensive analysis first examined 156 patients treated in SWOG trials. Validation analyses then examined 1,258 patients treated in MRC/NCRI trials. Univariable and multivariable analyses were used to determine the impact of age on the prognostic significance of NPM1 mutations, FLT3-ITDs, and the NPM1-positive/FLT3-ITD-negative genotype. RESULTS Patients with AML age 55 to 65 years with NPM1-positive/FLT3-ITD-negative genotype treated in SWOG trials had a significantly improved 2-year overall survival (OS) as compared with those without this genotype (70% v 32%; P < .001). Moreover, patients age 55 to 65 years with NPM1-positive/FLT3-ITD-negative genotype had a significantly improved 2-year OS as compared with those age > 65 years with this genotype (70% v 27%; P < .001); any potential survival benefit of this genotype in patients age > 65 years was marginal (27% v 16%; P = .33). In multivariable analysis, NPM1-positive/FLT3-ITD-negative genotype remained independently associated with an improved OS in patients age 55 to 65 years (P = .002) but not in those age > 65 years (P = .82). These results were confirmed in validation analyses examining the NCRI/MRC patients. CONCLUSION NPM1-positive/FLT3-ITD-negative genotype remains a relatively favorable prognostic factor for patients with AML age 55 to 65 years but not in those age > 65 years.


Molecular & Cellular Proteomics | 2016

Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling

Jacob Kennedy; Ping Yan; Lei Zhao; Richard G. Ivey; Uliana J. Voytovich; Heather D. Moore; Chenwei Lin; Era L. Pogosova-Agadjanyan; Derek L. Stirewalt; Kerryn W. Reding; Jeffrey R. Whiteaker; Amanda G. Paulovich

A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.

Collaboration


Dive into the Era L. Pogosova-Agadjanyan's collaboration.

Top Co-Authors

Avatar

Derek L. Stirewalt

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jerald P. Radich

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Soheil Meshinchi

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick R. Appelbaum

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Brent L. Wood

Seattle Cancer Care Alliance

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Kopecky

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Hana Lee

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivian G. Oehler

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge