Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eran Segal is active.

Publication


Featured researches published by Eran Segal.


Cell | 2007

Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs

John L. Rinn; Michael Kertesz; Jordon K. Wang; Sharon L. Squazzo; Xiao Ling Xu; Samantha A. Brugmann; L. Henry Goodnough; Jill A. Helms; Peggy J. Farnham; Eran Segal; Howard Y. Chang

Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.


Science | 2010

Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes

Miao-Chih Tsai; Ohad Manor; Yue Wan; Nima Mosammaparast; Jordon K. Wang; Fei Lan; Yang Shi; Eran Segal; Howard Y. Chang

A Lot of HOTAIR The roles of several classes of small (<50 nucleotides) noncoding RNAs are beginning to be defined in molecular detail, whereas the function of most of the long (∼200+ nucleotides), intergenic noncoding (linc)RNAs found in most eukaryotic genomes remains something of a mystery. The HOTAIR lincRNA, which is transcribed from the mouse HOXC locus, binds to the Polycomb Repressive Complex 2 (PRC2) and recruits it to HOXD and other genes, where its histone methylase activity acts to repress gene transcription. Tsai et al. (p. 689, published online 8 July) now show that HOTAIR also binds to a histone demethylase enzyme, LSD1, part of the CoREST/REST repressor complex. LSD1 acts to remove transcription-activating histone marks, reinforcing the repressive activity of the PRC2 complex. HOTAIR thus functions as a platform for the coordinated binding of PRC2 and LSD1-containing complexes to genes, as revealed in a genome-wide analysis of PRC1/CoREST/REST co-regulated genes. The long noncoding RNA HOTAIR binds two distinct protein complexes that modify chromatin and repress transcription. Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5′ domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3′ domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.


Nature Genetics | 2007

The role of site accessibility in microRNA target recognition

Michael Kertesz; Nicola Iovino; Ulrich Unnerstall; Ulrike Gaul; Eran Segal

MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that mutations diminishing target accessibility substantially reduce microRNA-mediated translational repression, with effects comparable to those of mutations that disrupt sequence complementarity. We devise a parameter-free model for microRNA-target interaction that computes the difference between the free energy gained from the formation of the microRNA-target duplex and the energetic cost of unpairing the target to make it accessible to the microRNA. This model explains the variability in our experiments, predicts validated targets more accurately than existing algorithms, and shows that genomes accommodate site accessibility by preferentially positioning targets in highly accessible regions. Our study thus demonstrates that target accessibility is a critical factor in microRNA function.


Nature | 2006

A genomic code for nucleosome positioning

Eran Segal; Yvonne N. Fondufe-Mittendorf; Lingyi Chen; Annchristine Thåström; Yair Field; Irene K. Moore; Ji Ping Wang; Jonathan Widom

Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome–DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain ∼50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.


Nature | 2009

The DNA-encoded nucleosome organization of a eukaryotic genome

Noam Kaplan; Irene K. Moore; Yvonne N. Fondufe-Mittendorf; Andrea J. Gossett; Desiree Tillo; Yair Field; Emily LeProust; Timothy R. Hughes; Jason D. Lieb; Jonathan Widom; Eran Segal

Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for ∼40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.


Nature Genetics | 2004

A module map showing conditional activity of expression modules in cancer

Eran Segal; Nir Friedman; Daphne Koller; Aviv Regev

DNA microarrays are widely used to study changes in gene expression in tumors, but such studies are typically system-specific and do not address the commonalities and variations between different types of tumor. Here we present an integrated analysis of 1,975 published microarrays spanning 22 tumor types. We describe expression profiles in different tumors in terms of the behavior of modules, sets of genes that act in concert to carry out a specific function. Using a simple unified analysis, we extract modules and characterize gene-expression profiles in tumors as a combination of activated and deactivated modules. Activation of some modules is specific to particular types of tumor; for example, a growth-inhibitory module is specifically repressed in acute lymphoblastic leukemias and may underlie the deregulated proliferation in these cancers. Other modules are shared across a diverse set of clinical conditions, suggestive of common tumor progression mechanisms. For example, the bone osteoblastic module spans a variety of tumor types and includes both secreted growth factors and their receptors. Our findings suggest that there is a single mechanism for both primary tumor proliferation and metastasis to bone. Our analysis presents multiple research directions for diagnostic, prognostic and therapeutic studies.


Nature | 2014

Artificial sweeteners induce glucose intolerance by altering the gut microbiota

Jotham Suez; Tal Korem; David Zeevi; Gili Zilberman-Schapira; Christoph A. Thaiss; Ori Maza; David Israeli; Niv Zmora; Shlomit Gilad; Adina Weinberger; Yael Kuperman; Alon Harmelin; Ilana Kolodkin-Gal; Hagit Shapiro; Zamir Halpern; Eran Segal; Eran Elinav

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.


Cell Stem Cell | 2008

Module Map of Stem Cell Genes Guides Creation of Epithelial Cancer Stem Cells

David J. Wong; Helen Liu; Todd W. Ridky; David S. Cassarino; Eran Segal; Howard Y. Chang

Self-renewal is a hallmark of stem cells and cancer, but existence of a shared stemness program remains controversial. Here, we construct a gene module map to systematically relate transcriptional programs in embryonic stem cells (ESCs), adult tissue stem cells, and human cancers. This map reveals two predominant gene modules that distinguish ESCs and adult tissue stem cells. The ESC-like transcriptional program is activated in diverse human epithelial cancers and strongly predicts metastasis and death. c-Myc, but not other oncogenes, is sufficient to reactivate the ESC-like program in normal and cancer cells. In primary human keratinocytes transformed by Ras and I kappa B alpha, c-Myc increases the fraction of tumor-initiating cells by 150-fold, enabling tumor formation and serial propagation with as few as 500 cells. c-Myc-enhanced tumor initiation is cell-autonomous and independent of genomic instability. Thus, activation of an ESC-like transcriptional program in differentiated adult cells may induce pathologic self-renewal characteristic of cancer stem cells.


Nature | 2010

Genome-wide measurement of RNA secondary structure in yeast

Michael Kertesz; Yue Wan; Elad Mazor; John L. Rinn; Robert C. Nutter; Howard Y. Chang; Eran Segal

The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here we describe a novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the messenger RNAs (mRNAs) of the budding yeast Saccharomyces cerevisiae and obtain structural profiles for over 3,000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared with untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions and an anti-correlation between the efficiency with which an mRNA is translated and the structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.


Nature Genetics | 2006

Evidence for an instructive mechanism of de novo methylation in cancer cells

Ilana Keshet; Yeshayahu Schlesinger; Shlomit Farkash; Eyal Rand; Merav Hecht; Eran Segal; Eli Pikarski; Richard A. Young; Alain Niveleau; Howard Cedar; Itamar Simon

DNA methylation has a role in the regulation of gene expression during normal mammalian development but can also mediate epigenetic silencing of CpG island genes in cancer and other diseases. Many individual genes (including tumor suppressors) have been shown to undergo de novo methylation in specific tumor types, but the biological logic inherent in this process is not understood. To decipher this mechanism, we have adopted a new approach for detecting CpG island DNA methylation that can be used together with microarray technology. Genome-wide analysis by this technique demonstrated that tumor-specific methylated genes belong to distinct functional categories, have common sequence motifs in their promoters and are found in clusters on chromosomes. In addition, many are already repressed in normal cells. These results are consistent with the hypothesis that cancer-related de novo methylation may come about through an instructive mechanism.

Collaboration


Dive into the Eran Segal's collaboration.

Top Co-Authors

Avatar

Adina Weinberger

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eran Elinav

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maya Lotan-Pompan

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tal Korem

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Eilon Sharon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

David Zeevi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Niv Zmora

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge