Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ergin Dilekoz is active.

Publication


Featured researches published by Ergin Dilekoz.


Journal of Clinical Investigation | 2008

Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1

Katharina Eikermann-Haerter; Ergin Dilekoz; Chiho Kudo; Sean I. Savitz; Christian Waeber; Michael J. Baum; Michel D. Ferrari; Arn M. J. M. van den Maagdenberg; Michael A. Moskowitz; Cenk Ayata

Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.


Annals of Neurology | 2010

Microemboli may link spreading depression, migraine aura, and patent foramen ovale

Ala Nozari; Ergin Dilekoz; Inna Sukhotinsky; Thor D. Stein; Katharina Eikermann-Haerter; Christina H. Liu; Yumei Wang; Matthew P. Frosch; Christian Waeber; Cenk Ayata; Michael A. Moskowitz

Patent foramen ovale and pulmonary arteriovenous shunts are associated with serious complications such as cerebral emboli, stroke, and migraine with aura. The pathophysiological mechanisms that link these conditions are unknown. We aimed to establish a mechanism linking microembolization to migraine aura in an experimental animal model.


The Journal of Neuroscience | 2011

Enhanced Subcortical Spreading Depression in Familial Hemiplegic Migraine Type 1 Mutant Mice

Katharina Eikermann-Haerter; Izumi Yuzawa; Tao Qin; Yumei Wang; Kwangyeol Baek; Young R. Kim; Ulrike Hoffmann; Ergin Dilekoz; Christian Waeber; Michel D. Ferrari; Arn M. J. M. van den Maagdenberg; Michael A. Moskowitz; Cenk Ayata

Familial hemiplegic migraine type 1, a monogenic migraine variant with aura, is linked to gain-of-function mutations in the CACNA1A gene encoding CaV2.1 channels. The S218L mutation causes severe channel dysfunction, and paroxysmal migraine attacks can be accompanied by seizures, coma, and hemiplegia; patients expressing the R192Q mutation exhibit hemiplegia only. Familial hemiplegic migraine knock-in mice expressing the S218L or R192Q mutation are highly susceptible to cortical spreading depression, the electrophysiological surrogate for migraine aura, and develop severe and prolonged motor deficits after spreading depression. The S218L mutants also develop coma and seizures and sometimes die. To investigate underlying mechanisms for these symptoms, we used multielectrode electrophysiological recordings, diffusion-weighted magnetic resonance imaging, and c-fos immunohistochemistry to trace spreading depression propagation into subcortical structures. We showed that unlike the wild type, cortical spreading depression readily propagated into subcortical structures in both familial hemiplegic migraine type 1 mutants. Whereas the facilitated subcortical spread appeared limited to the striatum in R192Q, hippocampal and thalamic spread was detected in the S218L mutants with an allele-dosage effect. Both strains exhibited increased susceptibility to subcortical spreading depression and reverberating spreading depression waves. Altogether, these data show that spreading depression propagates between cortex, basal ganglia, diencephalon, and hippocampus in genetically susceptible brains, which could explain the prolonged hemiplegia, coma, and seizure phenotype in this variant of migraine with aura.


Annals of Neurology | 2011

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression

Katharina Eikermann-Haerter; Izumi Yuzawa; Ergin Dilekoz; Anne Joutel; Michael A. Moskowitz; Cenk Ayata

Migraine with aura is often the first manifestation of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome (CADASIL), a disorder caused by NOTCH3 gene mutations expressed predominantly in vascular smooth muscle. Here, we report that cortical spreading depression (CSD), the electrophysiological substrate of migraine aura, is enhanced in mice expressing a vascular Notch 3 CADASIL mutation (R90C) or a Notch 3 knockout mutation. The phenotype was stronger in Notch 3 knockout mice, implicating both loss of function and neomorphic mutations in its pathogenesis. Our results link vascular smooth muscle Notch 3 mutations to enhanced spreading depression susceptibility, implicating the neurovascular unit in the development of migraine aura. Ann Neurol 2011


Journal of Cerebral Blood Flow and Metabolism | 2008

Hypoxia and hypotension transform the blood flow response to cortical spreading depression from hyperemia into hypoperfusion in the rat

Inna Sukhotinsky; Ergin Dilekoz; Michael A. Moskowitz; Cenk Ayata

Cortical spreading depression (CSD) evokes a large cerebral blood flow (CBF) increase in normal rat brain. In contrast, in focal ischemic penumbra, CSD-like periinfarct depolarizations (PID) are mainly associated with hypoperfusion. Because PIDs electrophysiologically closely resemble CSD, we tested whether conditions present in ischemic penumbra, such as tissue hypoxia or reduced perfusion pressure, transform the CSD-induced CBF response in nonischemic rat cortex. Cerebral blood flow changes were recorded using laser Doppler flowmetry in rats subjected to hypoxia, hypotension, or both. Under normoxic normotensive conditions, CSD caused a characteristic transient CBF increase (74 ± 7%) occasionally preceded by a small hypoperfusion (−4 ± 2%). Both hypoxia (pO2 45 ± 3 mm Hg) and hypotension (blood pressure 42 ± 2 mm Hg) independently augmented this initial hypoperfusion (−14 ± 2% normoxic hypotension; −16 ± 6% hypoxic normotension; −21 ± 5% hypoxic hypotension) and diminished the magnitude of hyperemia (44 ± 10% normoxic hypotension; 43 ± 9% hypoxic normotension; 27 ± 6% hypoxic hypotension). Hypotension and, to a much lesser extent, hypoxia increased the duration of hypoperfusion and the DC shift, whereas CSD amplitude remained unchanged. These results suggest that hypoxia and/or hypotension unmask a vasoconstrictive response during CSD in the rat such that, under nonphysiologic conditions (i.e., mimicking ischemic penumbra), the hyperemic response to CSD becomes attenuated resembling the blood flow response during PIDs.


Applied Optics | 2009

Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

Sava Sakadzic; Shuai Yuan; Ergin Dilekoz; Svetlana Ruvinskaya; Sergei A. Vinogradov; Cenk Ayata; David A. Boas

We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain.


European Journal of Neuroscience | 2015

The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration.

Nermin Tepe; Aslı Filiz; Ergin Dilekoz; Didem Akcali; Yildirim Sara; Andrew Charles; Hayrunnisa Bolay

This study investigated the effect of repetitive cortical spreading depression (CSD) on behaviour and the anatomical and physiological patterns of cellular activation of cortical and subcortical areas in awake, moving rats. Rat behaviours in response to repetitive CSD events evoked by the application of KCl were quantified with electrophysiological recording. Immunohistochemistry was used to quantify anatomical regions of cellular activation. The effects of acute valproic acid administration on the behavioural parameters and cellular activation were evaluated. CSD significantly decreased locomotor activity and induced freezing in awake, moving rats, and stimulated c‐Fos expression in the cortex, trigeminal nucleus caudalis (TNC), and amygdala. CSD also resulted in a prominent increase in c‐Fos expression in the ipsilateral thalamic reticular nucleus (TRN) visual sector. Electrophysiological recordings revealed propagation of CSD into the TRN. Valproic acid pretreatment decreased the duration of CSD‐induced freezing episodes and reversed the CSD‐induced reduction in locomotor activity. Acute valproic acid administration also significantly blocked CSD‐induced c‐Fos expression in the TNC and TRN. These findings show that CSD events cause consistent behavioural responses and activate specific brain regions in awake, freely moving rats. Selective activation of TRN by CSD and the suppression of this activation by valproic acid suggest that this brain region may play an important role in migraine pathogenesis and may represent a novel target for migraine therapy.


Journal of Cerebral Blood Flow and Metabolism | 2010

Gabapentin suppresses cortical spreading depression susceptibility

Ulrike Hoffmann; Ergin Dilekoz; Chiho Kudo; Cenk Ayata

Cortical spreading depression (CSD) is an intense depolarization wave implicated in the pathophysiology of brain injury states and migraine aura. As Cav2.1 channels modulate CSD susceptibility, we tested gabapentin, which inhibits Cav2.1 through high-affinity binding to its α2δ subunit, on CSD susceptibility in anesthetized rats. Gabapentin, 100 or 200 mg/kg, elevated the electrical threshold for CSD and diminished recurrent CSDs evoked by topical KCl, when administered 1 hour before testing. With its favorable safety and tolerability profile, gabapentin may have a role in suppression of injury depolarizations in stroke, intracranial hemorrhage, and traumatic brain injury.


Journal of Cerebral Blood Flow and Metabolism | 2013

Hyperlipidemia disrupts cerebrovascular reflexes and worsens ischemic perfusion defect.

Cenk Ayata; Hwa Kyoung Shin; Ergin Dilekoz; Dmitriy N. Atochin; Satoshi Kashiwagi; Katharina Eikermann-Haerter; Paul L. Huang

Hyperlipidemia is a highly prevalent risk factor for coronary and cervical atherosclerosis and stroke. However, even in the absence of overt atherosclerosis, hyperlipidemia disrupts endothelial and smooth muscle function. We investigated the impact of hyperlipidemia on resting-brain perfusion, fundamental cerebrovascular reflexes, and dynamic perfusion defect during acute focal ischemia in hyperlipidemic apolipoprotein E knockout mice before the development of flow-limiting atherosclerotic stenoses. Despite elevated blood pressures, absolute resting cerebral blood flow was reduced by 20% in apolipoprotein E knockout compared with wild type when measured by [14C]-iodoamphetamine technique. Noninvasive, high spatiotemporal resolution laser speckle flow imaging revealed that the lower autoregulatory limit was elevated in apolipoprotein E knockout mice (60 vs. 40 mm Hg), and cortical hyperemic responses to hypercapnia and functional activation were attenuated by 30% and 64%, respectively. Distal middle cerebral artery occlusion caused significantly larger perfusion defects and infarct volumes in apolipoprotein E knockout compared with wild type. Cerebrovascular dysfunction showed a direct relationship to the duration of high-fat diet. These data suggest that hyperlipidemia disrupts cerebral blood flow regulation and diminishes collateral perfusion in acute stroke in the absence of hemodynamically significant atherosclerosis.


Cephalalgia | 2011

Chronic daily cortical spreading depressions suppress spreading depression susceptibility

Inna Sukhotinsky; Ergin Dilekoz; Yumei Wang; Tao Qin; Katharina Eikermann-Haerter; Christian Waeber; Cenk Ayata

Background: Migraine is a disabling chronic episodic disorder. Attack frequency progressively increases in some patients. Incremental cortical excitability has been implicated as a mechanism underlying progression. Cortical spreading depression (CSD) is the electrophysiological event underlying migraine aura, and a headache trigger. We hypothesized that CSD events during frequent migraine attacks condition the cortex to increase the susceptibility to further attacks. Methods: A single daily CSD was induced for 1 or 2 weeks in mouse frontal cortex; contralateral hemisphere served as sham control. At the end of CSD conditioning, occipital CSD susceptibility was determined by measuring the frequency of CSDs evoked by topical KCl application. Results: Sham hemispheres developed 8.4 ± 0.3 CSDs/hour, and did not significantly differ from naïve controls without prior cranial surgery (9.3 ± 0.4 CSDs/hour). After 2 but not 1 week of daily CSD conditioning, CSD frequency (4.9 ± 0.3 CSDs/hour) as well as the duration and propagation speed were reduced significantly in the conditioned hemispheres. Histopathological examination revealed marked reactive astrocytosis without neuronal injury throughout the conditioned cortex after 2 weeks, temporally associated with CSD susceptibility. Conclusions: These data do not support the hypothesis that frequent migraine attacks predispose the brain to further attacks by enhancing tissue susceptibility to CSD.

Collaboration


Dive into the Ergin Dilekoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge