Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erh-Min Lai is active.

Publication


Featured researches published by Erh-Min Lai.


Journal of Bacteriology | 2009

An IcmF Family Protein, ImpLM, Is an Integral Inner Membrane Protein Interacting with ImpKL, and Its Walker A Motif Is Required for Type VI Secretion System-Mediated Hcp Secretion in Agrobacterium tumefaciens

Lay-Sun Ma; Jer-Sheng Lin; Erh-Min Lai

An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpL(M), an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpL(M) and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of beta-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpL(M) is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impL(M) mutants with substitutions or deletions in the Walker A motif failed to complement the impL(M) deletion mutant for Hcp secretion, which provided evidence that ImpL(M) may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpL(M) and another essential T6SS component, ImpK(L). Topology and biochemical fractionation analyses suggested that ImpK(L) is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpL(M)-ImpK(L) interaction domains suggested that ImpL(M) interacts with ImpK(L) via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpL(M) interacts with ImpK(L), and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.


Cell Host & Microbe | 2014

Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta

Lay-Sun Ma; Abderrahman Hachani; Jer-Sheng Lin; Alain Filloux; Erh-Min Lai

Summary The type VI secretion system (T6SS) is a widespread molecular weapon deployed by many Proteobacteria to target effectors/toxins into both eukaryotic and prokaryotic cells. We report that Agrobacterium tumefaciens, a soil bacterium that triggers tumorigenesis in plants, produces a family of type VI DNase effectors (Tde) that are distinct from previously known polymorphic toxins and nucleases. Tde exhibits an antibacterial DNase activity that relies on a conserved HxxD motif and can be counteracted by a cognate immunity protein, Tdi. In vitro, A. tumefaciens T6SS could kill Escherichia coli but triggered a lethal counterattack by Pseudomonas aeruginosa upon injection of the Tde toxins. However, in an in planta coinfection assay, A. tumefaciens used Tde effectors to attack both siblings cells and P. aeruginosa to ultimately gain a competitive advantage. Such acquired T6SS-dependent fitness in vivo and conservation of Tde-Tdi couples in bacteria highlights a widespread antibacterial weapon beneficial for niche colonization.


PLOS Pathogens | 2012

Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens.

Chih-Feng Wu; Jer-Sheng Lin; Gwo Chyuan Shaw; Erh-Min Lai

The type VI secretion system (T6SS) is a widespread, versatile protein secretion system in pathogenic Proteobacteria. Several T6SSs are tightly regulated by various regulatory systems at multiple levels. However, the signals and/or regulatory mechanisms of many T6SSs remain unexplored. Here, we report on an acid-induced regulatory mechanism activating T6SS in Agrobacterium tumefaciens, a plant pathogenic bacterium causing crown gall disease in a wide range of plants. We monitored the secretion of the T6SS hallmark protein hemolysin-coregulated protein (Hcp) from A. tumefaciens and found that acidity is a T6SS-inducible signal. Expression analysis of the T6SS gene cluster comprising the imp and hcp operons revealed that imp expression and Hcp secretion are barely detected in A. tumefaciens grown in neutral minimal medium but are highly induced with acidic medium. Loss- and gain-of-function analysis revealed that the A. tumefaciens T6SS is positively regulated by a chvG/chvI two-component system and negatively regulated by exoR. Further epistasis analysis revealed that exoR functions upstream of the chvG sensor kinase in regulating T6SS. ChvG protein levels are greatly increased in the exoR deletion mutant and the periplasmic form of overexpressed ExoR is rapidly degraded under acidic conditions. Importantly, ExoR represses ChvG by direct physical interaction, but disruption of the physical interaction allows ChvG to activate T6SS. The phospho-mimic but not wild-type ChvI response regulator can bind to the T6SS promoter region in vitro and activate T6SS with growth in neutral minimal medium. We present the first evidence of T6SS activation by an ExoR-ChvG/ChvI cascade and propose that acidity triggers ExoR degradation, thereby derepressing ChvG/ChvI to activate T6SS in A. tumefaciens.


Journal of Biological Chemistry | 2012

IcmF Family Protein TssM Exhibits ATPase Activity and Energizes Type VI Secretion

Lay-Sun Ma; Franz Narberhaus; Erh-Min Lai

Background: The IcmF family protein TssM is a conserved T6SS component. Results: TssM exhibits ATPase activity, and its impaired ATP binding/hydrolysis activity causes loss of TssM-TssL-Hcp complex formation and Hcp secretion. Conclusion: TssM functions as a T6SS energizer to recruit Hcp into the TssM-TssL complex and powers Hcp secretion. Significance: This is the first demonstration of TssM ATPase activity and its role in protein secretion. The type VI secretion system (T6SS) with diversified functions is widely distributed in pathogenic Proteobacteria. The IcmF (intracellular multiplication protein F) family protein TssM is a conserved T6SS inner membrane protein. Despite the conservation of its Walker A nucleotide-binding motif, the NTPase activity of TssM and its role in T6SS remain obscure. In this study, we characterized TssM in the plant pathogen Agrobacterium tumefaciens and provided the first biochemical evidence for TssM exhibiting ATPase activity to power the secretion of the T6SS hallmark protein, hemolysin-coregulated protein (Hcp). Amino acid substitutions in the Walker A motif of TssM caused reduced ATP binding and hydrolysis activity. Importantly, we discovered the Walker B motif of TssM and demonstrated that it is critical for ATP hydrolysis activity. Protein-protein interaction studies and protease susceptibility assays indicated that TssM undergoes an ATP binding-induced conformational change and that subsequent ATP hydrolysis is crucial for recruiting Hcp to interact with the periplasmic domain of the TssM-interacting protein TssL (an IcmH/DotU family protein) into a ternary complex and mediating Hcp secretion. Our findings strongly argue that TssM functions as a T6SS energizer to recruit Hcp into the TssM-TssL inner membrane complex prior to Hcp secretion across the outer membrane.


PLOS ONE | 2013

Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation

Jer-Sheng Lin; Lay-Sun Ma; Erh-Min Lai

The type VI secretion system (T6SS) is widely distributed in pathogenic Proteobacteria. Sequence and structural analysis of T6SS reveals a resemblance to the T4 bacteriophage tail, in which an outer sheath structure contracts an internal tube for injecting nucleic acid into bacterial cells. However, the molecular details of how this phage tail-like T6SS structure is assembled in vivo and executed for exoprotein or effector secretion remain largely unknown. Here, we used a systematic approach to identify T6SS machinery and secreted components and investigate the interaction among the putative sheath and tube components of Agrobacterium tumefaciens. We showed that 14 T6SS components play essential roles in the secretion of the T6SS hallmark exoprotein Hcp. In addition, we discovered a novel T6SS exoprotein, Atu4347, that is dispensable for Hcp secretion. Interestingly, Atu4347 and the putative tube components, Hcp and VgrG, are mainly localized in the cytoplasm but also detected on the bacterial surface. Atu4342 (TssB) and Atu4341 (TssC41) interact with and stabilize each other, which suggests that they are functional orthologs of the sheath components TssB (VipA) and TssC (VipB), respectively. Importantly, TssB interacts directly with the three exoproteins (Hcp, VgrG, and Atu4347), in which Hcp also interacts directly with VgrG-1 on co-purification from Escherichia coli. Further co-immunoprecipitation and pulldown assays revealed these subcomplex(es) in A. tumefaciens and thereby support T6SS functioning as a contractile phage tail-like structure.


Journal of Bacteriology | 2012

Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens.

Ina Wilms; Philip Möller; Anna-Maria Stock; Rosemarie Gurski; Erh-Min Lai; Franz Narberhaus

The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.


Proceedings of the National Academy of Sciences of the United States of America | 2016

VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex.

Devanand D. Bondage; Jer-Sheng Lin; Lay-Sun Ma; Chih-Horng Kuo; Erh-Min Lai

Significance The type VI secretion system involves multiple strategies for effector delivery via fusion or interaction of effectors to structural components of the phage tail-like structure, the tube component Hcp or spike protein VgrG. However, the detailed mechanisms underlying how diverse VgrG proteins govern effector delivery remains unclear. Here, we report that the divergent C-terminus of VgrG protein is the molecular determinant governing specific effector delivery and is required for interacting with a specific adaptor/chaperone protein that stabilizes and binds directly with the cognate effector. The striking conservation of genetic modules encoding homologous VgrG, a distinct set of potential adaptor/chaperone, and a specific effector in various Proteobacteria strongly suggest a conserved mechanism in type VI effector delivery. Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone–effector complex (Tap-1–Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1–PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1–Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1–Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity.


Molecular Genetics and Genomics | 2010

Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant

Sonja Klüsener; Stephanie Hacker; Yun-Long Tsai; Julia E. Bandow; Ronald Gust; Erh-Min Lai; Franz Narberhaus

Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, whereas only a limited number of bacteria are able to synthesize PC. Intriguingly, many of the bacteria with PC-containing membranes interact with eukaryotic hosts. PC is one of the major membrane lipids in the phytopathogenic bacterium Agrobacterium tumefaciens. The presence of PC is critical for diverse cellular processes like motility, biofilm formation, stress resistance, and virulence. The exact role of PC in these processes is unknown. Here, we examined the global consequences of the complete loss of PC at the proteomic and transcriptomic levels. Both strategies validated the impaired virulence gene induction responsible for the virulence defect of the PC-deficient mutant. In addition, the proteomic approach revealed a limited subset of proteins with altered abundance including the reduced flagellar proteins FlaA and FlaB, which explains the motility defect of the PC mutant. At the whole-genome level, the loss of PC was correlated with altered expression of up to 13% of all genes, most encoding membrane or membrane-associated proteins and proteins with functions in the extracytoplasmic stress response. Our integrated analysis revealed that A. tumefaciens dynamically remodels its membrane protein composition in order to sustain normal growth in the absence of PC.


PLOS Pathogens | 2014

Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens.

Jer-Sheng Lin; Hsin-Hui Wu; Pang-Hung Hsu; Lay-Sun Ma; Yin-Yuin Pang; Ming-Daw Tsai; Erh-Min Lai

The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed.


Microbiology | 2009

Small heat-shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens

Yun-Long Tsai; Ming-Hsuan Wang; Chan Gao; Sonja Klüsener; Christian Baron; Franz Narberhaus; Erh-Min Lai

Agrobacterium tumefaciens is a Gram-negative plant-pathogenic bacterium that causes crown gall disease by transferring and integrating its transferred DNA (T-DNA) into the host genome. We characterized the chromosomally encoded alpha-crystallin-type small heat-shock protein (α-Hsp) HspL, which was induced by the virulence (vir) gene inducer acetosyringone (AS). The transcription of hspL but not three other α-Hsp genes (hspC, hspAT1, hspAT2) was upregulated by AS. Further expression analysis in various vir mutants suggested that AS-induced hspL transcription is not directly activated by the VirG response regulator but rather depends on the expression of VirG-activated virB genes encoding components of the type IV secretion system (T4SS). Among the 11 virB genes encoded by the virB operon, HspL protein levels were reduced in strains with deletions of virB6, virB8 or virB11. VirB protein accumulation but not virB transcription levels were reduced in an hspL deletion mutant early after AS induction, implying that HspL may affect the stability of individual VirB proteins or of the T4S complex directly or indirectly. Tumorigenesis efficiency and the VirB/D4-mediated conjugal transfer of an IncQ plasmid RSF1010 derivative between A. tumefaciens strains were reduced in the absence of HspL. In conclusion, increased HspL abundance is triggered in response to certain VirB protein(s) and plays a role in optimal VirB protein accumulation, VirB/D4-mediated DNA transfer and tumorigenesis.

Collaboration


Dive into the Erh-Min Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hau-Hsuan Hwang

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge