Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erhard Kopetzki is active.

Publication


Featured researches published by Erhard Kopetzki.


Molecular Genetics and Genomics | 1989

Control of formation of active soluble or inactive insoluble baker's yeast α-glucosidase PI in Escherichia coli by induction and growth conditions

Erhard Kopetzki; Guenter Schumacher; Peter Buckel

SummaryUsing standard growth conditions (LB medium, 37°C, induction with 5 mM IPTG) yeast α-glucosidase PI expressed under the control of the regulated tac-hybrid promoter results in the synthesis of insoluble aggregated α-glucosidase granules in Escherichia coli. Under these conditions active soluble α-glucosidase amounts to less than 1% of the heterologously produced protein. However, the amount of soluble active α-glucosidase was dramatically increased when the strong tac-hybrid promoter was to a limited extent induced. This was achieved at concentrations of 0.01 mM IPTG or of 1% lactose or lower in a lactosepermease deficient host strain containing the lacIqrepressor gene on an R-plasmid. The formation of active soluble α-glucosidase was almost 100% when E. coli cells induced in this manner were cultivated under conditions that reduced growth rate, i.e. at decreased temperature, extreme pH values or in minimal and complete media supplemented with different carbon sources.


Structure | 1999

Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding.

Karl-Peter Hopfner; Annette Karcher; Katrin Sichler; Erhard Kopetzki; Hans Brandstetter; Robert Huber; Wolfram Bode; Richard A. Engh

BACKGROUND Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.


Journal of Molecular Biology | 2002

Structural basis of the adaptive molecular recognition by MMP9.

Hyunju Cha; Erhard Kopetzki; Robert Huber; Martin Lanzendörfer; Hans Brandstetter

Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level.


The EMBO Journal | 1997

Converting blood coagulation factor IXa into factor Xa: dramatic increase in amidolytic activity identifies important active site determinants

Karl-Peter Hopfner; Hans Brandstetter; Annette Karcher; Erhard Kopetzki; Robert Huber; Richard A. Engh; Wolfram Bode

The coagulation factors IXa (fIXa) and Xa (fXa) share extensive structural and functional homology; both cleave natural substrates effectively only with a cofactor at a phospholipid surface. However, the amidolytic activity of fIXa is 104‐fold lower than that of fXa. To identify determinants of this poor reactivity, we expressed variants of truncated fIXa (rf9a) and fXa (rf10a) in Escherichia coli. The crystal structures of fIXa and fXa revealed four characteristic active site components which were subsequently exchanged between rf9a and rf10a. Exchanging Glu219 by Gly or exchanging the 148 loop did not increase activity of rf9a, whereas corresponding mutations abolished reactivity of rf10a. Exchanging Ile213 by Val only moderately increased reactivity of rf9a. Exchanging the 99 loop, however, dramatically increased reactivity. Furthermore, combining all four mutations essentially introduced fXa properties into rf9a: the amidolytic activity was increased 130‐fold with fXa substrate selectivity. The results suggest a 2‐fold origin of fIXas poor reactivity. A narrowed S3/S4 subsite disfavours interaction with substrate P3/P4 residues, while a distorted S1 subsite disfavours effective cleavage of the scissile bond. Both defects could be repaired by introducing fXa residues. Such engineered coagulation enzymes will be useful in diagnostics and in the development of therapeutics.


Journal of Molecular Biology | 2002

Crystal structures of uninhibited factor VIIa link its cofactor and substrate-assisted activation to specific interactions.

Katrin Sichler; David W. Banner; Allan D'Arcy; Karl-Peter Hopfner; Robert Huber; Wolfram Bode; Georg-Burkhard Kresse; Erhard Kopetzki; Hans Brandstetter

Factor VIIa initiates the extrinsic coagulation cascade; this event requires a delicately balanced regulation that is implemented on different levels, including a sophisticated multi-step activation mechanism of factor VII. Its central role in hemostasis and thrombosis makes factor VIIa a key target of pharmaceutical research. We succeeded, for the first time, in recombinantly producing N-terminally truncated factor VII (rf7) in an Escherichia coli expression system by employing an oxidative, in vitro, folding protocol, which depends critically on the presence of ethylene glycol. Activated recombinant factor VIIa (rf7a) was crystallised in the presence of the reversible S1-site inhibitor benzamidine. Comparison of this 1.69A crystal structure with that of an inhibitor-free and sulphate-free, but isomorphous crystal form identified structural details of factor VIIa stimulation. The stabilisation of Asp189-Ser190 by benzamidine and the capping of the intermediate helix by a sulphate ion appear to be sufficient to mimic the disorder-order transition conferred by the cofactor tissue factor (TF) and the substrate factor X. Factor VIIa shares with the homologous factor IXa, but not factor Xa, a bell-shaped activity modulation dependent on ethylene glycol. The ethylene glycol-binding site of rf7a was identified in the vicinity of the 60 loop. Ethylene glycol binding induces a significant conformational rearrangement of the 60 loop. This region serves as a recognition site of the physiologic substrate, factor X, which is common to both factor VIIa and factor IXa. These results provide a mechanistic framework of substrate-assisted catalysis of both factor VIIa and factor IXa.


FEBS Letters | 1995

Glycoprotein biosynthesis in Saccharomyces cerevisiae: ngd29, an N-glycosylation mutant allelic to och1 having a defect in the initiation of outer chain formation

Ludwig Lehle; Antje Eiden; Klaus Lehnert; Anton Haselbeck; Erhard Kopetzki

Outer chain glycosylation in Saccharomyces cerevisiae leads to heterogeneous and immunogenic asparagine‐linked saccharide chains containing more than 50 mannose residues on secreted glycoproteins. Using a [3H]mannose suicide selection procedure a collection of N‐glycosylation defective mutants (designated ngd) was isolated. One mutant, ngd29, was found to have a defect in the initiation of the outer chain and displayed a temperature growth sensitivity at 37°C allowing the isolation of the corresponding gene by complementation. Cloning, sequencing and disruption of NGD29 showed that it is a non lethal gene and identical to OCH1. It complemented both the glycosylation and growth defect. Membranes isolated from an ngd29 disruptant or an ngd29mnn1 double mutant were no longer able, in contrast to membranes from wild type cells, to transfer mannose from GDPmannose to Man8GlcNAc2, the in vivo acceptor for building up the outer chain. Heterologous expression of glucose oxidase from Aspergillus niger in an ngd29mnn1 double mutant produced a secreted uniform glycoprotein with exclusively Man8GlcNAc2 structure that in wild type yeast is heavily hyperglycosylated. The data indicate that this mutant strain is a suitable host for the expression of recombinant glycoproteins from different origin in S. cerevisiae to obtain mammalian oligomannosidic type N‐linked carbohydrate chains.


FEBS Letters | 1997

Dramatic enhancement of the catalytic activity of coagulation factor IXa by alcohols

Jörg Stürzebecher; Erhard Kopetzki; Wolfram Bode; Karl-Peter Hopfner

The coagulation factor IXa (FIXa) exhibits a very weak proteolytic activity towards natural or synthetic substrates. Upon complex formation with its cofactor FVIIIa and Ca2+‐mediated binding to phospholipid membranes, FIXa becomes a very potent activator of FX. The presence of FVIIIa has no effect on the cleavage of peptide substrates by FIXa, however. We found that several alcohols dramatically enhance the catalytic activity of human FIXa towards synthetic substrates. Substrates with the tripeptidyl moiety R–d‐Xxx–Gly–Arg are especially susceptible to the enhanced FIXa catalysis. Maximal increase up to 20‐fold has been measured in the presence of ethylene glycol. We suggest that alcohols modify the conformation of FIXa rendering the active‐site cleft more easily accessible to tripeptide substrates with a hydrophobic residue in the P3‐position.


Journal of Biological Chemistry | 2003

Physiological fIXa Activation Involves a Cooperative Conformational Rearrangement of the 99-Loop

Katrin Sichler; Erhard Kopetzki; Robert Huber; Wolfram Bode; Karl-Peter Hopfner; Hans Brandstetter

Coagulation factor IXa (fIXa) plays a central role in the coagulation cascade. Enzymatically, fIXa is characterized by its very low amidolytic activity that is not improved in the presence of cofactor, factor VIIIa (fVIIIa), distinguishing fIXa from all other coagulation factors. Activation of the fIXa-fVIIIa complex requires its macromolecular substrate, factor X (fX). The 99-loop positioned near the active site partly accounts for the poor activity of fIXa because it adopts a conformation that interferes with canonical substrate binding in S2-S4. Here we show that residues Lys-98 and Tyr-99 are critically linked to the amidolytic properties of fIXa. Exchange of Tyr-99 with smaller residues resulted not only in an overall decreased activity but also in impaired binding in S1. Replacement of Lys-98 with smaller and uncharged residues increased activity. Simultaneous mutagenesis of Lys-98, Tyr-177, and Tyr-94 produced an enzyme with 7000-fold increased activity and altered specificity. This triple mutant probably mimics the conformational changes that are physiologically induced by cofactor and substrate binding. It therefore provides a cooperative two-step activation model for fIXa. Tyr-177 locks the 99-loop in an inactive conformation which, in the physiologic complex, is released by cofactor fVIIIa. FX is then able to rearrange the unlocked 99-loop and subsequently binds to the active site cleft.


Hepatology | 2012

Targeted delivery of interferon-α to hepatitis B virus-infected cells using T-cell receptor-like antibodies.

Changhua Ji; Konduru S. R. Sastry; Georg Tiefenthaler; Jennifer Cano; Tenny Tang; Zi Zong Ho; Denise Teoh; Sandhya Bohini; Antony Chen; Surya Sankuratri; Paul A. MacAry; P. Kennedy; Han Ma; Stefan Ries; Klaus Klumpp; Erhard Kopetzki; Antonio Bertoletti

During antiviral therapy, specific delivery of interferon‐α (IFNα) to infected cells may increase its antiviral efficacy, trigger a localized immune reaction, and reduce the side effects caused by systemic administration. Two T‐cell receptor‐like antibodies (TCR‐L) able to selectively bind hepatitis B virus (HBV)‐infected hepatocytes of chronic hepatitis B patients and recognize core (HBc18‐27) and surface (HBs183‐91) HBV epitopes associated with different human leukocyte antigen (HLA)‐A*02 alleles (A*02:01, A*02:02, A*02:07, A*02:11) were generated. Each antibody was genetically linked to two IFNα molecules to produce TCR‐L/IFNα fusion proteins. We demonstrate that the fusion proteins triggered an IFNα response preferentially on the hepatocytes presenting the correct HBV‐peptide HLA‐complex and that the mechanism of the targeted IFNα response was dependent on the specific binding of the fusion proteins to the HLA/HBV peptide complexes through the TCR‐like variable regions of the antibodies. Conclusion: TCR‐L antibodies can be used to target cytokines to HBV‐infected hepatocytes in vitro. Fusion of IFNα to TCR‐L decreased the intrinsic biological activity of IFNα but preserved the overall specificity of the protein for the cognate HBV peptide/HLA complexes. This induction of an effective IFNα response selectively in HBV‐infected cells might have a therapeutic advantage in comparison to the currently used native or pegylated IFNα. (HEPATOLOGY 2012;56:2027–2038)


Journal of Biological Chemistry | 2009

CD4-anchoring HIV-1 Fusion Inhibitor with Enhanced Potency and in Vivo Stability

Changhua Ji; Erhard Kopetzki; Andreas Jekle; Kay-Gunnar Stubenrauch; Xingrong Liu; Jun Zhang; Eileen Rao; Tilman Schlothauer; Stephan Fischer; Nick Cammack; Gabrielle Heilek; Stefan Ries; Surya Sankuratri

In this study, we describe a novel CD4-targeting bifunctional human immunodeficiency virus (HIV-1) fusion inhibitor (CD4-BFFI) that blocks HIV-1 entry by inhibiting both HIV-1 attachment and fusion and is highly potent against both R5 and X4 HIV-1 viruses in various antiviral assays, including peripheral blood mononuclear cell (PBMC) infection assays. Previously, we have reported a CCR5 antibody-based bifunctional HIV-1 fusion inhibitor (BFFI) that was highly active in blocking R5 HIV-1 infection but was ineffective against X4 viruses infecting human PBMCs (Kopetzki, E., Jekle, A., Ji, C., Rao, E., Zhang, J., Fischer, S., Cammack, N., Sankuratri, S., and Heilek, G. (2008) Virology J. 5, 56–65). CD4-BFFI, which consists of two HIV-1 fusion inhibitor (FI) T-651 variant peptides recombinantly fused to the Fc end of a humanized anti-CD4 monoclonal antibody, has demonstrated more than 100-fold greater antiviral activity than T-651 variant or the parental CD4 monoclonal antibody. Mechanistic studies revealed that CD4-BFFI primarily blocks the HIV-1-cell fusion step through its FI peptide moieties. The enhanced antiviral activity of CD4-BFFI is most likely due to avid binding of the bivalent FI peptides as well as the increased local concentration of CD4-BFFI via attachment to the target cell surface receptor CD4. In vivo pharmacokinetic studies demonstrated that CD4-BFFI was stable in monkey blood, and a dose of 10 mg/kg maintained serum concentrations greater than 2,000-fold over the IC90 value for 7 days postdosing. This novel bifunctional inhibitor with improved potency and favorable pharmacokinetic properties may offer a novel approach for HIV-1 therapy.

Collaboration


Dive into the Erhard Kopetzki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge