Eri Iwai-Kanai
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eri Iwai-Kanai.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Hua Yuan; Cynthia N. Perry; Chengqun Huang; Eri Iwai-Kanai; Raquel S. Carreira; Christopher C. Glembotski; Roberta A. Gottlieb
Bacterial endotoxin lipopolysaccharide (LPS) is responsible for the multiorgan dysfunction that characterizes septic shock and is causal in the myocardial depression that is a common feature of endotoxemia in patients. In this setting the myocardial dysfunction appears to be due, in part, to the production of proinflammatory cytokines. A line of evidence also indicates that LPS stimulates autophagy in cardiomyocytes. However, the signal transduction pathway leading to autophagy and its role in the heart are incompletely characterized. In this work, we wished to determine the effect of LPS on autophagy and the physiological significance of the autophagic response. Autophagy was monitored morphologically and biochemically in HL-1 cardiomyocytes, neonatal rat cardiomyocytes, and transgenic mouse hearts after the administration of bacterial LPS or TNF-alpha. We observed that autophagy was increased after exposure to LPS or TNF-alpha, which is induced by LPS. The inhibition of TNF-alpha production by AG126 significantly reduced the accumulation of autophagosomes both in cell culture and in vivo. The inhibition of p38 MAPK or nitric oxide synthase by pharmacological inhibitors also reduced autophagy. Nitric oxide or H(2)O(2) induced autophagy in cardiomyocytes, whereas N-acetyl-cysteine, a potent antioxidant, suppressed autophagy. LPS resulted in increased reactive oxygen species (ROS) production and decreased total glutathione. To test the hypothesis that autophagy might serve as a damage control mechanism to limit further ROS production, we induced autophagy with rapamycin before LPS exposure. The activation of autophagy by rapamycin suppressed LPS-mediated ROS production and protected cells against LPS toxicity. These findings support the notion that autophagy is a cytoprotective response to LPS-induced cardiomyocyte injury; additional studies are needed to determine the therapeutic implications.
Circulation | 1999
Eri Iwai-Kanai; Koji Hasegawa; Makoto Araki; Tsuyoshi Kakita; Tatsuya Morimoto; Shigetake Sasayama
Background—The apoptosis of cardiac myocytes may play a role in the development of heart failure. Norepinephrine is one of the factors activated in heart failure and can induce myocardial cell apoptosis in culture. However, it is unknown if α- and β-adrenergic pathways coordinately or differentially regulate apoptosis and if this apoptotic pathway uses common or cell type–specific apoptotic signals. Methods and Results—We stimulated cultured neonatal rat cardiac myocytes with an α1-adrenergic agonist (PE, phenylephrine), a β-adrenergic agonist (isoproterenol [Iso]) or a membrane-permeable cAMP analogue (8-Br-cAMP) in serum-free conditions for 48 hours. Iso and 8-Br-cAMP markedly increased the number of TUNEL-positive cells (%TUNEL-positive nuclei >40%) compared with saline stimulation (<10%). DNA fragmentation was also confirmed by ladder formation in agarose gels. Apoptotic myocytes were characterized by cell shrinkage and nuclear condensation, consistent with morphological features of apoptosis. The Iso...
Nature Communications | 2013
Atsushi Hoshino; Yuichiro Mita; Yoshifumi Okawa; Makoto Ariyoshi; Eri Iwai-Kanai; Tomomi Ueyama; Koji Ikeda; Takehiro Ogata; Satoaki Matoba
Cumulative evidence indicates that mitochondrial dysfunction has a role in heart failure progression, but whether mitochondrial quality control mechanisms are involved in the development of cardiac dysfunction remains unclear. Here we show that cytosolic p53 impairs autophagic degradation of damaged mitochondria and facilitates mitochondrial dysfunction and heart failure in mice. Prevalence and induction of mitochondrial autophagy is attenuated by senescence or doxorubicin treatment in vitro and in vivo. We show that cytosolic p53 binds to Parkin and disturbs its translocation to damaged mitochondria and their subsequent clearance by mitophagy. p53-deficient mice show less decline of mitochondrial integrity and cardiac functional reserve with increasing age or after treatment with doxorubicin. Furthermore, overexpression of Parkin ameliorates the functional decline in aged hearts, and is accompanied by decreased senescence-associated β-galactosidase activity and proinflammatory phenotypes. Thus, p53-mediated inhibition of mitophagy modulates cardiac dysfunction, raising the possibility that therapeutic activation of mitophagy by inhibiting cytosolic p53 may ameliorate heart failure and symptoms of cardiac ageing.
American Journal of Pathology | 2005
Akihiro Kanematsu; Shingo Yamamoto; Eri Iwai-Kanai; Isao Kanatani; Masaaki Imamura; Rosalyn M. Adam; Yasuhiko Tabata; Osamu Ogawa
Tissue regeneration on acellular matrix grafts has great potential for therapeutic organ reconstruction. However, hollow organs such as the bladder require smooth muscle cell regeneration, the mechanisms of which are not well defined. We investigated the mechanisms by which bone marrow cells participate in smooth muscle formation during urinary bladder regeneration, using in vivo and in vitro model systems. In vivo bone marrow cells expressing green fluorescent protein were transplanted into lethally irradiated rats. Eight weeks following transplantation, bladder domes of the rats were replaced with bladder acellular matrix grafts. Two weeks after operation transplanted marrow cells repopulated the graft, as evidenced by detection of fluorescent staining. By 12 weeks they reconstituted the smooth muscle layer, with native smooth muscle cells (SMC) infiltrating the graft. In vitro, the differential effects of distinct growth factor environments created by either bladder urothelial cells or bladder SMC on phenotypic changes of marrow cells were examined. First, supernatants of cultured bladder cells were used as conditioned media for marrow cells. Second, these conditions were reconstituted with exogenous growth factors. In each case, a growth factor milieu characteristic of SMC induced an SMC-like phenotype in marrow cells, whereas that of urothelial cells failed. These findings suggest that marrow cells differentiate into smooth muscle on acellular matrix grafts in response to the environment created by SMC.
Journal of Molecular and Cellular Cardiology | 2012
Atsushi Hoshino; Satoaki Matoba; Eri Iwai-Kanai; Hideo Nakamura; Masaki Kimata; Mikihiko Nakaoka; Maki Katamura; Yoshifumi Okawa; Makoto Ariyoshi; Yuichiro Mita; Koji Ikeda; Tomomi Ueyama; Mitsuhiko Okigaki; Hiroaki Matsubara
Inhibition of tumor suppressor p53 is cardioprotective against ischemic injury and provides resistance to subsequent cardiac remodeling. We investigated p53-mediated expansion of ischemic damage with a focus on mitochondrial integrity in association with autophagy and apoptosis. p53(-/-) heart showed that autophagic flux was promoted under ischemia without a change in cardiac tissue ATP content. Electron micrographs revealed that ischemic border zone in p53(-/-) mice had 5-fold greater numbers of autophagic vacuoles containing mitochondria, indicating the occurrence of mitophagy, with an apparent reduction of abnormal mitochondria compared with those in WT mice. Analysis of autophagic mediators acting downstream of p53 revealed that TIGAR (TP53-induced glycolysis and apoptosis regulator) was exclusively up-regulated in ischemic myocardium. TIGAR(-/-) mice exhibited the promotion of mitophagy followed by decrease of abnormal mitochondria and resistance to ischemic injury, consistent with the phenotype of p53(-/-) mice. In p53(-/-) and TIGAR(-/-) ischemic myocardium, ROS production was elevated and followed by Bnip3 activation which is an initiator of mitophagy. Furthermore, the activation of Bnip3 and mitophagy due to p53/TIGAR inhibition were reversed with antioxidant N-acetyl-cysteine, indicating that this adaptive response requires ROS signal. Inhibition of mitophagy using chloroquine in p53(-/-) or TIGAR(-/-) mice exacerbated accumulation of damaged mitochondria to the level of wild-type mice and attenuated cardioprotective action. These findings indicate that p53/TIGAR-mediated inhibition of myocyte mitophagy is responsible for impairment of mitochondrial integrity and subsequent apoptosis, the process of which is closely involved in p53-mediated ventricular remodeling after myocardial infarction.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Atsushi Hoshino; Makoto Ariyoshi; Yoshifumi Okawa; Satoshi Kaimoto; Motoki Uchihashi; Kuniyoshi Fukai; Eri Iwai-Kanai; Koji Ikeda; Tomomi Ueyama; Takehiro Ogata; Satoaki Matoba
Significance Tumor suppressor p53 has been known to have a broader role that extends to the regulation of energy metabolism. We investigated the role of islet p53 and found that genetic and pharmacological inhibition of p53 preserves insulin secretion and glucose tolerance in both streptozotocin-induced type 1 and db/db mouse models of type 2 diabetes. Glucolipotoxicy induces accumulation of p53 in the cytosol via oxidative stress and endoplasmic reticulum stress. Cytosolic p53 inhibits the autophagic clearance of damaged mitochondria by an inhibitory protein–protein interaction with Parkin, leading to the impairment of mitochondrial energetics and subsequent insulin secretion signals in islet β-cells. Mitochondrial compromise is a fundamental contributor to pancreatic β-cell failure in diabetes. Previous studies have demonstrated a broader role for tumor suppressor p53 that extends to the modulation of mitochondrial homeostasis. However, the role of islet p53 in glucose homeostasis has not yet been evaluated. Here we show that p53 deficiency protects against the development of diabetes in streptozotocin (STZ)-induced type 1 and db/db mouse models of type 2 diabetes. Glucolipotoxicity stimulates NADPH oxidase via receptor for advanced-glycation end products and Toll-like receptor 4. This oxidative stress induces the accumulation of p53 in the cytosolic compartment of pancreatic β-cells in concert with endoplasmic reticulum stress. Cytosolic p53 disturbs the process of mitophagy through an inhibitory interaction with Parkin and induces mitochondrial dysfunction. The occurrence of mitophagy is maintained in STZ-treated p53−/− mice that exhibit preserved glucose oxidation capacity and subsequent insulin secretion signaling, leading to better glucose tolerance. These protective effects are not observed when Parkin is deleted. Furthermore, pifithrin-α, a specific inhibitor of p53, ameliorates mitochondrial dysfunction and glucose intolerance in both STZ-treated and db/db mice. Thus, an intervention with cytosolic p53 for a mitophagy deficiency may be a therapeutic strategy for the prevention and treatment of diabetes.
Journal of Cellular Physiology | 2002
Eri Iwai-Kanai; Koji Hasegawa; Masatoshi Fujita; Makoto Araki; Tetsuhiko Yanazume; Souichi Adachi; Shigetake Sasayama
Basic fibroblast growth factor (bFGF) is an important angiogenic factor produced by hearts subjected to ischemia. However, the direct effects of bFGF on myocardial cells are unknown. Primary cultured cardiac myocytes from neonatal rats were stimulated with lipopolysaccharide (LPS), a potent inducer of inducible nitric oxide synthase (iNOS), in the presence or the absence of bFGF. LPS induced the expression of iNOS in cardiac myocytes, demonstrated at both mRNA and protein levels. We showed that LPS activated the apoptotic pathway, evidenced by TUNEL staining, DNA ladder formation, and morphologic features. LPS‐induced apoptosis was blocked by the administration of L‐NAME, an inhibitor of NOS. This indicates that LPS induces apoptosis via an iNOS‐dependent pathway. Administration of bFGF completely inhibited myocardial cell apoptosis induced by hydrogen peroxide or acidic medium as well as LPS. To determine signaling pathways for this inhibitory effect, we utilized PD098059, an MEK‐1‐specific inhibitor. PD098059 blocked bFGF‐induced activation of ERK (extracellularly responsive kinase)‐1/2 and neutralized the apoptotic inhibitory effect of bFGF. These findings demonstrate that LPS induces myocardial cell apoptosis in an iNOS‐dependent manner. The results also suggest that bFGF is a protective factor against myocardial cell apoptosis and that this protection requires the MEK‐1‐ERK pathway. J. Cell. Physiol. 190: 54–62, 2002.
Molecular and Cellular Biochemistry | 2004
Eri Iwai-Kanai; Koji Hasegawa
Accumulating data support the idea that apoptosis in cardiac myocytes, in part, contributes to the development of heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. Norepinephrine is one such factor and induces apoptosis in cardiac myocytes via a β-adrenergic receptor pathway. β-adrenergic agonist-induced apoptosis in cardiac myocytes is dependent on the activation of the cAMP/protein kinase A pathway. Interestingly, the activation of this pathway protects PC12 cells from apoptosis, suggesting that cAMP/protein kinase A regulates apoptosis in a cell type-specific manner. Another neurohormonal factor activated in heart failure is endothelin-1, which acts as a potent survival factor against myocardial cell apoptosis. Intracellular signaling pathways for endothelin-1-mediated protection include activation of MEK-1/ERK1/2 and PI3 kinase. In addition to these protective pathways common among cell types, endothelin-1 activates the calcium-activated phosphatase calcineurin, which is necessary for the nuclear import of NFAT transcription factors. These factors interact with the cardiac-restricted zinc finger protein GATA-4 and induce transcription and expression of anti-apoptotic molecule bcl-2. Thus, myocardial cell apoptosis is regulated by pathways unique to cardiac myocytes as well as by those common among cell types. It should be further determined whether agents that specifically block myocardial cell apoptosis will attenuate the progression of heart failure.
Circulation-heart Failure | 2012
Hideo Nakamura; Satoaki Matoba; Eri Iwai-Kanai; Masaki Kimata; Atsushi Hoshino; Mikihiko Nakaoka; Maki Katamura; Yoshifumi Okawa; Makoto Ariyoshi; Yuichiro Mita; Koji Ikeda; Mitsuhiko Okigaki; Souichi Adachi; Hideo Tanaka; Tetsuro Takamatsu; Hiroaki Matsubara
Background— Diabetic cardiomyopathy is characterized by energetic dysregulation caused by glucotoxicity, lipotoxicity, and mitochondrial alterations. p53 and its downstream mitochondrial assembly protein, synthesis of cytochrome c oxidase 2 (SCO2), are important regulators of mitochondrial respiration, whereas the involvement in diabetic cardiomyopathy remains to be determined. Methods and Results— The role of p53 and SCO2 in energy metabolism was examined in both type I (streptozotocin [STZ] administration) and type II diabetic (db/db) mice. Cardiac expressions of p53 and SCO2 in 4-week STZ diabetic mice were upregulated (185% and 152% versus controls, respectively, P<0.01), with a marked decrease in cardiac performance. Mitochondrial oxygen consumption was increased (136% versus control, P<0.01) in parallel with augmentation of mitochondrial cytochrome c oxidase (complex IV) activity. Reactive oxygen species (ROS)-damaged myocytes and lipid accumulation were increased in association with membrane-localization of fatty acid translocase protein FAT/CD36. Antioxidant tempol reduced the increased expressions of p53 and SCO2 in STZ-diabetic hearts and normalized alterations in mitochondrial oxygen consumption, lipid accumulation, and cardiac dysfunction. Similar results were observed in db/db mice, whereas in p53-deficient or SCO2-deficient diabetic mice, the cardiac and metabolic abnormalities were prevented. Overexpression of SCO2 in cardiac myocytes increased mitochondrial ROS and fatty acid accumulation, whereas knockdown of SCO2 ameliorated them. Conclusions— Myocardial p53/SCO2 signal is activated by diabetes-mediated ROS generation to increase mitochondrial oxygen consumption, resulting in excessive generation of mitochondria-derived ROS and lipid accumulation in association with cardiac dysfunction.
Circulation Research | 2004
Teruhisa Kawamura; Koh Ono; Tatsuya Morimoto; Masaharu Akao; Eri Iwai-Kanai; Hiromichi Wada; Naoya Sowa; Toru Kita; Koji Hasegawa
Endothelin-1 (ET-1) is a potent survival factor that protects cardiac myocytes from apoptosis. ET-1 induces cardiac gene transcription and protein expression of antiapoptotic B cell leukemia-2 (bcl-2) in a calcineurin-dependent manner. A cellular target of adenovirus early region 1A (E1A) oncoprotein, p300 also activates bcl-2 transcription in cardiac myocytes and is required for their survival. p300 acts as a calcineurin-regulated nuclear factors of activated T lymphocytes (NFATc), downstream targets of calcineurin. In addition, the bcl-2 promoter contains multiple NFAT consensus sequences. These findings prompted us to investigate the role of NFATc in ET-1–dependent and p300-dependent bcl-2 transcription in cardiac myocytes. In primary cardiac myocytes prepared from neonatal rats, mutation of 2 NFAT sites within the bcl-2 promoter completely abolished the ET-1– and p300-induced increases in the activity of this promoter. We show here that p300 markedly potentiates the binding of NFATc1 to the bcl-2 NFAT element by interacting with NFATc1 in an E1A-dependent manner. On the other hand, stimulation of cardiac myocytes with ET-1 causes nuclear translocation of NFATc1, which interacts with p300 and increases DNA binding. Expression of E1A did not change the cardiac nuclear localization of NFATc1 but blocked its interaction with p300, DNA binding, and bcl-2 promoter activation. These findings suggest that ET-1–dependent NFATc signaling associates with p300 in the transactivation of bcl-2 gene in cardiac myocytes.