Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eri Kubo is active.

Publication


Featured researches published by Eri Kubo.


American Journal of Physiology-cell Physiology | 2011

Deficiency of Prdx6 in lens epithelial cells induces ER stress response-mediated impaired homeostasis and apoptosis

Nigar Fatma; Prerna Singh; Bhavana Chhunchha; Eri Kubo; Toshimichi Shinohara; Biju Bhargavan; Dhirendra P. Singh

The multifunctional cytoprotective protein peroxiredoxin 6 (Prdx6) maintains cellular homeostasis and membrane integrity by regulating expression of intracellular reactive oxygen species (ROS) and phospholipid turnover. Using cells derived from targeted inactivation of Prdx6 gene or its depletion by RNA interference or aging, we showed that Prdx6 deficiency in cells evoked unfolded protein response (UPR), evidenced by increased expression or activation of proapoptotic factors, CHOP, ATF4, PERK, IRE-α and eIF2-α and by increased caspases 3 and 12 processing. Those cells displayed enhanced and sustained expression of endoplasmic reticulum (ER) stress-related chaperon proteins, Bip/glucose-regulated protein 78, calnexin, and calreticulin. Under cellular stress induced by hypoxia (1% O(2) or CoCl(2) treatment) or tunicamycin, Prdx6-deficient cells exhibited aberrant activation of ER stress-responsive genes/protein with higher expression of ROS, and died with apoptosis. Wild-type cells exposed to tunicamycin or hypoxia remained relatively insensitive with lower expression of ROS and ER-responsive genes than did Prdx6-deficient cells, but upregulation of ER stress responsive proteins or chaperones mimicked the UPR response of Prdx6-deficient or aging cells. Expression of Prdx6 blocked ER stress-induced deleterious signaling by optimizing physiologically aberrant expression of ER stress responsive genes/proteins in Prdx6-deficient cells or cells facing stressors, and rescued the cells from apoptosis. These findings demonstrate that impaired homeostasis and progression of pathogenesis in Prdx6-deficient lens epithelial cells or in aging cells should be blocked by a supply of Prdx6. The results provide a new molecular basis for understanding the etiology of several age-associated degenerative disorders, and potentially for developing antioxidant Prdx6-based therapeutics.


Journal of Radiation Research | 2014

Emerging issues in radiogenic cataracts and cardiovascular disease

Nobuyuki Hamada; Yuki Fujimichi; Toshiyasu Iwasaki; Noriko Fujii; Masato Furuhashi; Eri Kubo; Tohru Minamino; Takaharu Nomura; Hitoshi Sato

In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.


American Journal of Physiology-cell Physiology | 2013

Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation.

Bhavana Chhunchha; Nigar Fatma; Eri Kubo; Prerana Rai; Sanjay Singh; Dhirendra P. Singh

Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumins neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O(2) or CoCl(2) treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl(2) displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress.


Cell Death and Disease | 2011

Specificity protein, Sp1-mediated increased expression of Prdx6 as a curcumin-induced antioxidant defense in lens epithelial cells against oxidative stress

Bhavana Chhunchha; N. Fatma; Biju Bhargavan; Eri Kubo; Anil Kumar; Dhirendra P. Singh

Peroxiredoxin 6 (Prdx6) is a pleiotropic oxidative stress-response protein that defends cells against reactive oxygen species (ROS)-induced damage. Curcumin, a naturally occurring agent, has diversified beneficial roles including cytoprotection. Using human lens epithelial cells (hLECs) and Prdx6-deficient cells, we show the evidence that curcumin protects cells by upregulating Prdx6 transcription via invoking specificity protein 1 (Sp1) activity against proapoptotic stimuli. Curcumin enhanced Sp1 and Prdx6 mRNA and protein expression in a concentration-dependent manner, as evidenced by western and real-time PCR analyses, and thereby negatively regulated ROS-mediated apoptosis by blunting ROS expression and lipid peroxidation. Bioinformatic analysis and DNA–protein binding assays disclosed three active Sp1 sites (−19/27, −61/69 and −82/89) in Prdx6 promoter. Co-transfection experiments with Sp1 and Prdx6 promoter–chloramphenicol acetyltransferase (CAT) constructs showed that CAT activity was dramatically increased in LECs or Sp1-deficient cells (SL2). Curcumin treatment of LECs enhanced Sp1 binding to its sites, consistent with curcumin-dependent stimulation of Prdx6 promoter with Sp1 sites and cytoprotection. Notably, disruption of Sp1 sites by point mutagenesis abolished curcumin transactivation of Prdx6. Also, curcumin failed to activate Prdx6 expression in the presence of Sp1 inhibitors, demonstrating that curcumin-mediated increased expression of Prdx6 was dependent on Sp1 activity. Collectively, the study may provide a foundation for developing transcription-based inductive therapy to reinforce endogenous antioxidant defense by using dietary supplements.


PLOS ONE | 2012

Transcriptional Protein Sp1 Regulates LEDGF Transcription by Directly Interacting with Its Cis -Elements in GC-Rich Region of TATA-Less Gene Promoter

Dhirendra P. Singh; Biju Bhargavan; Bhavana Chhunchha; Eri Kubo; Anil Kumar; Nigar Fatma

LEDGF/p75 interacts with DNA/protein to regulate gene expression and function. Despite the recognized diversity of function of LEDGF/p75, knowledge of its transregulation is in its infancy. Here we report that LEDGF/p75 gene is TATA-less, contains GC-rich cis elements and is transcriptionally regulated by Sp1 involving small ubiquitin-like modifier (Sumo1). Using different cell lines, we showed that Sp1 overexpression increased the level of LEDGF/p75 protein and mRNA expression in a concentration-dependent fashion. In contrast, RNA interference depletion of intrinsic Sp1 or treatment with artemisinin, a Sp1 inhibitor, reduced expression of LEDGF/p75, suggesting Sp1-mediated regulation of LEDGF/p75. In silico analysis disclosed three evolutionarily conserved, putative Sp1 sites within LEDGF/p75 proximal promoter (−170/+1 nt). DNA-binding and transactivation assays using deletion and point mutation constructs of LEDGF/p75 promoter-CAT revealed that all Sp1 sites (−50/−43, −109/−102 and −146/−139) differentially regulate LEDGF/p75. Cotransfection studies with Sp1 in Drosophila cells that were Sp1-deficient, showed increased LEDGF/p75 transcription, while in lens epithelial cells (LECs) promoter activity was inhibited by artemisinin. These events were correlated with levels of endogenous Sp1-dependent LEDGF/p75 expression, and higher resistance to UVB-induced cell death. ChIP and transactivation assays showed that Sumoylation of Sp1 repressed its transcriptional activity as evidenced through its reduced binding to GC-box and reduced ability to activate LEDGF/p75 transcription. As whole, results revealed the importance of Sp1 in regulating expression of LEDGF/p75 gene and add to our knowledge of the factors that control LEDGF/p75 within cellular microenvironments, potentially providing a foundation for LEDGF/p75 expression-based transcription therapy.


Cell Death and Disease | 2012

LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway

Biju Bhargavan; N. Fatma; Bhavana Chhunchha; V Singh; Eri Kubo; Dhirendra P. Singh

Lens epithelium-derived growth factor (LEDGF) maintains survival pathways by augmenting the transcription of stress-response genes such as small heat-shock protein 27. Recently, aberrant expression of LEDGF was found in prostate cancer (PC). Herein, we showed that LEDGF overexpression upregulated Hsp27 in PC cells, DU145, PC-3 and LNCaP and promoted antiapoptotic pathways in PCs. We found that these cells had higher abundance of Hsp27, which was correlated with the levels of LEDGF expression. Transactivation assay in DU145 cells revealed that transactivation of Hsp27 was related to the magnitude of LEDGF expression. Silencing of LEDGF in DU145 cells abrogated Hsp27 expression and inhibited stimulated cell proliferation, invasiveness and migration. These cells were arrested in S and G2 phase, and failed to accumulate cyclin B1, and showed increased apoptosis. Furthermore, LEDGF-depleted DU145 cells displayed elevated Bax and cleaved caspase 9 expression and reduced levels of Bcl2, Bcl-XL. The activated survival pathway(s), ERK1/2 and Akt, were selectively decreased in these cells, which characteristically have lower tumorigenicity. Conversely, the depleted cells, when re-overexpressed with LEDGF or Hsp27, regained tumorigenic properties. Collectively, results reveal the involvement of LEDGF-mediated elevated expression of Hsp27-dependent survival pathway(s) in PC. Our findings suggest new lines of investigation aimed at developing therapies by targeting LEDGF or its aberrant expression-associated stimulated antiapoptotic pathway(s).


Journal of Cellular and Molecular Medicine | 2013

Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

Eri Kubo; Nailia Hasanova; Nigar Fatma; Hiroshi Sasaki; Dhirendra P. Singh

Injury to lens epithelial cells (LECs) leads to epithelial–mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α‐smooth muscle actin (α‐SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up‐regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non‐cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α‐SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm‐based inhibitors for postponing PCO and cataractogenesis.


American Journal of Physiology-cell Physiology | 2016

Delivery of a protein transduction domain-mediated Prdx6 protein ameliorates oxidative stress-induced injury in human and mouse neuronal cells.

Shatrunjai P. Singh; Bhavana Chhunchha; Nigar Fatma; Eri Kubo; Sanjay Singh; Dhirendra P. Singh

Oxidative stress or reduced expression of naturally occurring antioxidants during aging has been identified as a major culprit in neuronal cell/tissue degeneration. Peroxiredoxin (Prdx) 6, a protective protein with GSH peroxidase and acidic calcium-independent phospholipase A2 activities, acts as a rheostat in regulating cellular physiology by clearing reactive oxygen species (ROS) and thereby optimizing gene regulation. We found that under stress, the neuronal cells displayed reduced expression of Prdx6 protein and mRNA with increased levels of ROS, and the cells subsequently underwent apoptosis. Using Prdx6 fused to TAT transduction domain, we showed evidence that Prdx6 was internalized in human brain cortical neuronal cells, HCN-2, and mouse hippocampal cells, HT22. The cells transduced with Prdx6 conferred resistance against the oxidative stress inducers paraquat, H2O2, and glutamate. Furthermore, Prdx6 delivery ameliorated damage to neuronal cells by optimizing ROS levels and overstimulation of NF-κB. Intriguingly, transduction of Prdx6 increased the expression of endogenous Prdx6, suggesting that protection against oxidative stress was mediated by both extrinsic and intrinsic Prdx6. The results demonstrate that Prdx6 expression is critical to protecting oxidative stress-evoked neuronal cell death. We propose that local or systemic application of Prdx6 can be an effective means of delaying/postponing neuronal degeneration.


Epigenetics | 2013

Epigenetic repression of LEDGF during UVB exposure by recruitment of SUV39H1 and HDAC1 to the Sp1-responsive elements within LEDGF promoter CpG island

Biju Bhargavan; Bhavana Chhunchha; Nigar Fatma; Eri Kubo; Anil Kumar; Dhirendra P. Singh

Expression level of lens epithelial derived growth factor (LEDGF) is vital for LEDGF-mediated cell survival and cytoprotection against proapoptotic stimuli. We previously demonstrated that LEDGF is transcriptionally regulated by Sp1-responsive elements within a CpG island in the LEDGF promoter. Herein, we report on the existence of epigenetic signaling involved in the repression of LEDGF transcription in lens epithelial cells (LECs) facing UVB. UVB exposure led to histone H3 dimethylation and deacetylation at its CpG island, where a histone deacetylase/histone methylase (HDAC1/SUV39H1) complex was recruited. Exposure of LECs to UVB stress altered LEDGF protein and mRNA expression as well as promoter activity, while failing to methylate the CpG island. These events were correlated with increased reactive oxygen species (ROS) and increased cell death. LEDGF promoter activity and expression remained unaltered after 5-Aza treatment, but were relieved with tricostatin A, an inhibitor of HDACs. Expression analysis disclosed that UVB radiation altered the global expression levels of acetylated histone proteins, diminished total histone acetyltransferase (HAT) activity and increased HDAC activity and HDAC1 expression. In silico analysis of LEDGF proximal promoter and ChIP analyses disclosed HDAC1/SUV39H1 complex anchored to the -170/-10 nt promoter regions at Sp1-responsive elements and also attenuated Sp1 binding, resulting in HDAC1- and SUV39H1-dependent deacetylation and dimethylation of H3 at K9. Acetylation of H3K9 was essential for LEDGF active transcription, while enrichment of H3K9me2 at Sp1-responsive elements within CpGs (-170/-10) by UVB radiation repressed LEDGF transcription. Our study may contribute to understanding diseases associated with LEDGF aberrant expression due to specific epigenetic modifications, including blinding disorders.


FEBS Journal | 2014

Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription.

Bhavana Chhunchha; Nigar Fatma; Eri Kubo; Dhirendra P. Singh

Loss of the cytoprotective protein peroxiredoxin 6 (Prdx6) in cells that are aging or under oxidative stress is known to be linked to the pathobiology of many age‐related diseases. However, the mechanism by which Prdx6 activity goes awry is largely unknown. Using Prdx6‐deficient (Prdx6−/−) cells as a model for aging or redox active cells, human/mouse lens epithelial cells (LECs) facing oxidative stress and aging lenses, we found a significant increase in the levels of small ubiquitin‐like modifier (Sumo)1 conjugates. These cells displayed increased levels of Sumo1 and reduced the expression of Prdx6. Specifically, we observed that Prdx6 is a target for aberrant sumoylation signaling, and that Sumo1 modification reduces its cellular abundance. LECs overexpressing Sumo1 showed reduced expression and activity of Prdx6 and its transactivator specificity protein 1 (Sp1), mRNA and protein with increased levels of reactive oxygen species; those cells were vulnerable to oxidative stress‐induced cell death. A significant reduction in Prdx6, Sp1 protein and mRNA expression was observed in redox active Prdx6−/− cells and in aging lenses/LECs. The reduction was correlated with increased expression of Sumo1 and enrichment of the inactive form (dimeric) of Sumo‐specific protease (Senp)1. Experiments with Sumo1‐fused Prdx6 and Prdx6 promoter‐linked to chloramphenicol acetyltransferase reporter gene constructs indicated that Sumo1 dysregulated Prdx6 activity by reducing its abundance and attenuating its transcription; in contrast, the delivery of Senp1 or Prdx6 reversed the process. The data show that reactive oxygen species‐evoked aberrant sumoylation signaling affects Prdx6 activity by reducing Prdx6 abundance, as well as transcription. The findings of the present study may provide a foundation for a strategy to repair deleterious oxidative signaling generated by a reduced activity of Prdx6.

Collaboration


Dive into the Eri Kubo's collaboration.

Top Co-Authors

Avatar

Dhirendra P. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Sasaki

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Bhavana Chhunchha

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shinsuke Shibata

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Teppei Shibata

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Naoko Shibata

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Nigar Fatma

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hiromi Osada

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Etsuko Kiyokawa

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar

Natsuko Hatsusaka

Kanazawa Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge